Дипломная работа: Использование алгоритмов искусственного интеллекта в процессе построения UFO-моделей

В системах, основанных на правилах, часто акцент делается на системах прямого логического вывода. Например, в качестве правил и начальных фактов используется ряд примеров, что позволяет встроить систему с правилами в более крупную систему и задействовать ее для создания системы управления сенсорами, устойчивой к ошибкам [37].

1.2.4 Нечеткая логика

Ту роль, которую в классической теории множеств играет двузначная булева логика, в теории нечетких множеств играет многозначная нечеткая логика, в которой предположения о принадлежности объекта множеству, например Быстрый("Порш"), могут принимать действительные значения в интервале от 0 до 1. Возникает вопрос, а как, используя концепцию неопределенности, вычислить значение истинности сложного выражения, такого как Не(Быстрый("Шевроле")).

По аналогии с теорией вероятности, если F представляет собой нечеткий предикат, операция отрицания реализуется по формуле Не(F)=1–F.

Но аналоги операций конъюнкции и дизъюнкции в нечеткой логике не имеют никакой связи с теорией вероятностей [38]. Рассмотрим следующее выражение: ""Порш" является быстрым, представительским автомобилем".

В классической логике предположение (Быстрый("Порш")) И (Представительский ("Порш")) является истинным в том и только в том случае, если истинны оба члена конъюнкции. В нечеткой логике существует соглашение: если F и G являются нечеткими предикатами, то f(F Ù G )(X)=min(fF (X), fG (X)).

Таким образом, если Быстрый("Порш")=0,9 и Представительский("Порш")=0,7, то (Быстрый("Порш"))И(Представительский ("Порш")) = 0,7.

А теперь рассмотрим выражение (Быстрый("Порш")) И Не(Быстрый("Порш")). Вероятность истинности этого утверждения равна 0, но в нечеткой логике значение этого выражения будет равно 0,1. Какой смысл имеет это значение? Его можно считать показателем принадлежности автомобиля к нечеткому множеству среднескоростных автомобилей, которые в чем-то близки к быстрым, а в чем-то – к медленным.

Смысл выражения Быстрый("Порш")=0,9 заключается в том, что мы только на 90% уверены в принадлежности этого автомобиля к быстрым именно из-за неопределенности самого понятия "быстрый автомобиль". Вполне резонно предположить, что существует некоторая уверенность в том, что "Порш" не принадлежит к быстрым. Например, он медленнее автомобиля, принимающего участие в гонках "Формула-1".

Аналог операции дизъюнкции в нечеткой логике определяется следующим образом: f(F Ú G )(X)=max(fF (X), fG (X)).

Операторы обладают свойствами коммутативности, ассоциативности и взаимной дистрибутивности. Как к операторам в стандартной логике, к ним применим принцип композитивности, т.е. значения составных выражений вычисляются только по значениям выражений-компонентов. В этом операторы нечеткой логики составляют полную противоположность законам теории вероятностей, согласно которым при вычислении вероятностей конъюнкции и дизъюнкции величин нужно принимать во внимание условные вероятности [39].

Нечеткая логика имеет дело с ситуациями, когда и сформулированный вопрос, и знания, которыми мы располагаем, содержат нечетко очерченные понятия. Однако нечеткость формулировки понятий является не единственным источником неопределенности. Иногда мы просто не уверены в самих фактах. Если утверждается: "Возможно, Иван сейчас в Киеве", то говорить о нечеткости понятий Иван и Киев не приходится. Неопределенность заложена в самом факте, действительно ли Иван находится в Киеве.

Теория возможностей является одним из направлений в нечеткой логике, в котором рассматриваются точно сформулированные вопросы, базирующиеся на неточных знаниях.

На основе нечеткой логики часто строятся системы управления. Например, в модели зарядного устройства для батарей функции содержат не только стандартные операторы нечеткой логики, но и вспомогательные функции, которые поддерживают создание функций нечеткой логики [40].

1.2.5 Умные агенты

Агент – это аппаратная или программная сущность, способная действовать в интересах достижения целей, поставленных перед ним владельцем и/или пользователем [41].

Проблематика интеллектуальных агентов и мультиагентных систем имеет уже почти 40-летнюю историю и сформировалась на основе результатов, полученных в рамках работ по распределенному искусственному интеллекту, распределенному решению задач и параллельному искусственному интеллекту. Но, пожалуй, лишь в последнее десятилетие она выделилась в самостоятельную область исследований и приложений и все больше претендует на одну из ведущих ролей в рамках интеллектуальных информационных технологий. Спектр работ по данной тематике весьма широк, интегрирует достижения в области компьютерных сетей и открытых систем, искусственного интеллекта и информационных технологий и ряда других исследований, а результаты уже сегодня позволяют говорить о новом качестве получаемых решений.

В настоящее время множество исследовательских лабораторий, университетов, фирм и промышленных организаций работают в этой области, и список их постоянно расширяется. Он включает мало известные имена и небольшие коллективы, уже признанные исследовательские центры и организации, а также огромные транснациональные компании. Областями практического использования агентных технологий являются:

– управление информационными потоками и сетями;

– управление воздушным движением;

– информационный поиск;

– электронная коммерция;

– обучение;

– электронные библиотеки.

К построению агентно-ориентированных систем можно указать два подхода: реализация единственного автономного агента или разработка мультиагентной системы. Автономный агент взаимодействует только с пользователем и реализует весь спектр функциональных возможностей, необходимых в рамках агентно-ориентированной программы. В противовес этому мультиагентные системы являются программно-вычислительными комплексами, где взаимодействуют различные агенты для решения задач, которые трудны или недоступны в силу своей сложности для одного агента. Часто такие мультиагентные системы называют агентствами, в рамках которых агенты общаются, кооперируются и договариваются между собой для поиска решения поставленной перед ними задачи.

Агентные технологии обычно предполагают использование определенных типологий агентов и их моделей, архитектур мультиагентных систем и опираются на соответствующие агентные библиотеки и средства поддержки разработки разных типов мультиагентных систем.

Умные агенты применяются различными способами. Например, существует агент-фильтр, использующийся для фильтрации информации из сети Интернет. Параметры поиска Web-агента задаются в простом файле конфигурации. Затем агент автономно собирает новости через протокол NNTP и предоставляет их пользователю с помощью HTTP-протокола, действуя аналогично Web-серверу [42].

1.2.6 Алгоритм муравья

Алгоритмы муравья – это сравнительно новый метод, который может использоваться для поиска оптимальных путей по графу. Данные алгоритмы симулируют движение муравьев в окружающей среде и используют модель ферментов для коммуникации с другими агентами [43].

К-во Просмотров: 211
Бесплатно скачать Дипломная работа: Использование алгоритмов искусственного интеллекта в процессе построения UFO-моделей