Дипломная работа: Исследование роста микромицетов на различных субстратах
Микроскопические грибы значительно различаются способностью усваивать разные соединения углерода и синтезировать из них составные части клетки. Некоторые виды могут использовать для питания разнообразные соединения. С другой стороны, известно множество различных специализированных типов микромицетов, которые нуждаются в специфических соединениях. Нефть, газообразные углеводороды, парафин, воск, резины, гудрон, капрон и многие другие синтетические материалы, а также пестициды после попадания в почву начинают разлагаться плесневыми грибами и бактериями. Практически не существует органических соединений, которые не усваивались бы микроорганизмами.
Роль грибов в экологических системах велика и разнообразна. В трофических цепях они являются консументами, вторичными или третичными, но в основном выполняют функции редуцентов, минерализуют органические вещества растительного и животного происхождения. Мощные фотосинтетические системы в биосфере компенсированы столь же мощными и многообразными гидролитическими системами (ферментами) микробного мира. Микроскопические грибы являются важнейшими компонентами этой каталитической системы, способной трансформировать практически все природные органические соединения. Возможность использовать в качестве единственного источника углерода природные биополимеры определяется способностью грибов синтезировать соответствующие гидролитические экзоферменты, расщепляющие нерастворимые полимеры до мономеров, способных проникать в клетку.
Разнообразная группа органотрофных организмов, грибов и бактерий, осуществляющих деструкционную ветвь в цикле углерода, характеризуется кооперативными отношениями, при которых грибы-редуценты включаются в процесс после того, как легко разлагаемые органические вещества уже использованы бактериями (Домарадский, 2007).
Любое органическое вещество вначале расщепляется до более простых соединений, а последние вовлекаются в тот или иной биосинтетический процесс. Возникающая при расщеплении энергия накапливается в АТФ или в других соединениях, имеющих макроэргические связи. Таким образом, органические субстраты обеспечивают как энергетическую, так и конструктивную стороны обмена плесневых грибов и бактерий. Следовательно, вопрос об углеродном питании и о влиянии источников углерода на развитие микроорганизмов является очень существенным при проведении любых микробиологических экспериментов (Лилли, 1957).
Целью данной работы является изучение особенностей использования чистыми культурами микромицетов различных источников углерода.
В соответствии с поставленной целью задачами исследования является определение у коллекционных штаммов микроскопических грибов:
1) способности использовать модельные источники углерода (сахара, многоатомные спирты, крахмал, целлюлозу);
2) способности к росту на природных субстратах (растительный опад, камыш, сено, опилки, кора) по радиальной скорости роста;
3) способности к ассимиляции природных субстратов (растительный опад, камыш, сено, опилки, кора) на основе метода проращивания грибных зачатков во влажной камере.
Практическая значимость работы заключается в том, что в работе изучены биохимические особенности 10 штаммов коллекционных микромицетов. Полученные данные могут служить основой составления паспортов штаммов.
ГЛАВА 1. ОСОБЕННОСТИ МИКРОСКОПИЧЕСКИХ ГРИБОВ, ВЫДЕЛЕННЫХ ИЗ РАЗЛИЧНЫХ ЭКОНИШ
1.1 Влияние экологических условий на рост микромицетов
1.1.1 Сравнительный анализ скорости радиального роста микромицетов, выделенных из различных экотопов
На сегодня экологические проблемы становятся не менее актуальными, чем запросы микробиологической промышленности (Кочкина, 1978; Великанов, 1983; Жданова, 1982-2000; Паников, 1991). Надежды на их решение связывают с так называемым системным подходом, который предполагает использование количественной информации о природных объектах (Паников, 1991). Здесь чрезвычайно остро ощущается недостаток знаний в отношении почвенных микроорганизмов (Гильманов, 1983; Parton, 1988), и большая часть дефицита информации относится именно к вопросам роста микробных популяций (Паников, 1991). Этот недостаток обусловлен тем, что фундаментальные основы и принципы микробиологических исследований вырабатывались в отрыве от решения экологических задач. По данным ряда авторов (Кочкина, 1978; Паников, 1991), экологически наиболее корректно выращивание грибных колоний на агаризованных средах, так как пространственно-неоднородный рост микроскопических грибов наиболее приближен к их росту в природных условиях.
Таким образом, изучение ростовых процессов способствует описанию многообразия адаптивных поведенческих реакций у микроорганизмов в изменяющихся условиях среды (что важно для экологии) (Паников, 1991).
Известно, что под действием неблагоприятных факторов, в том числе и радиационного загрязнения, у организмов происходят глубокие изменения, которые проявляются на морфологическом, физиологическом и биохимическом уровнях. В то же время такой физиологический показатель, как скорость роста, является достаточно консервативным для каждого вида микромицетов (Кочкина, 1978).
В работах последних лет было показано, что при длительном существовании микромицетов на высокорадиоактивных субстратах радиальная скорость роста некоторых видов существенно изменяется (Жданова, 2000; Вембер, 2001). Для того чтобы проанализировать, у каких именно видов происходят подобные изменения (в зависимости от их систематического положения и морфологических особенностей), Блажеевской с соавторами проведено сравнительное изучение радиальной скорости роста у различных видов микромицетов. Часть штаммов каждого из видов была представлена грибами, выделенными из радиоактивно загрязненных местообитаний, а другая часть – из радиоактивно чистых экотопов (Блажеевская, 2002).
Скорости роста изученных штаммов грибов оценивали с учетом места их выделения и характера среды культивирования.
По скорости радиального роста все изученные виды можно условно разделить на три основные группы: 1) виды с наивысшей скоростью роста – Ulocladium consortiale и Alternariaalternatа; 2) вид Cladosporium sphaerospermum, скорость роста которого была наиболее низкой; 3) остальные изученные виды занимали промежуточное положение по этому параметру (Блажеевская, 2002).
Большое значение заслуживает характер ритмических колебаний роста изученных культур. Биологические ритмы присущи всем уровням живой материи – от молекулярных и субклеточных структур до биосферы, что обеспечивает единство живой и неживой природы. Все они отражают процессы регулирования функций организма (Романов, 1980).
Биохимический механизм циркадных ритмов связывают с обменом нуклеиновых кислот (Шаркова, 1971). Имеющиеся данные указывают на то, что с усилением ритма инициируется обмен РНК. Биоритмы митоспоровых грибов отражают неограниченно восстанавливаемый адаптивный онтогенез, формирующийся на основе сигналов окружающей среды, генетический механизм которого базируется на высокой способности грибов к формированию многоядерности и ядерного дуализма (Беккер, 1983).
Характер и продолжительность ростовых ритмов, так же как и радиальная скорость роста, зависят от систематического положения гриба, его возраста (возраста культуры), концентрации в среде основных источников питания и энергии, а также других экологических факторов (Романов, 1980; Бухало, 1988). Ритмы грибов варьируют от 4 – 5 часов до 7 – 9 суток, нескольких недель и даже лет (Шаркова, 1971).
Блажеевской Ю. В. было показано, что штаммы с замедленной ритмичностью (>1-суточных) выделены из наиболее радиоактивно загрязненных местообитаний. Кроме того, среди штаммов с наибольшей продолжительностью биоритмов (1 – 2-суточные) преобладали штаммы с невысокой скоростью роста. В подавляющем большинстве случаев изученные виды примерно одинаково росли на голодной среде и сусло-агаре. В чистых и загрязненных почвах нет заметной разницы между количеством видов, предпочитающих богатую среду, и количеством видов, одинаково растущих на обеих средах. Замедление ростовых процессов отмечено только у штаммов, долгое время существовавших на субстратах с высоким уровнем радиоактивного загрязнения. Подобное замедление скорости роста может свидетельствовать об адаптивной перестройке метаболических процессов у штаммов, длительное время растущих на высокорадиоактивных субстратах (Блажеевская, 2002).
1.1.2 Особенности роста микроскопических грибов в стандартных условиях культивирования
А. Е. Ивановой (1999) было исследовано формирование микроколоний из двух типов колониеобразующих единиц (при размножении спорами и фрагментами мицелия) в стандартных для почвенно–микробиологических анализов условиях – на среде Чапека при 25 ○ С после взбалтывания на качалке.
Было установлено, что в зависимости от вида гриба и типа КОЕ наличие и величина лаг-фазы могут различаться. Так, у гриба Mucorhiemalis длительность лаг-фазы при росте мицелия из фрагментов гиф разной длины была меньше, чем при росте из спор. А при росте мицелия из фрагментов гиф Alternariaalternatа и Penicilliumspinulosum лаг-фаза в данных условиях вовсе не наблюдалось. В то же время при прорастании спор A. alternatа лаг-фаза тоже не отмечена, а прорастание спор P. spinulosum наступало лишь через определенный интервал времени.
Длительность экспоненциальной фазы была короче при развитии грибных микроколоний из фрагментов мицелия, чем из спор. Чем больше была начальная величина растущих фрагментов, тем короче были сроки прохождения экспоненциональной фазы роста. Удельная скорость роста в экспоненциональной фазе при развитии мицелия из фрагментов гиф M. hiemalis и P. spinulosum была меньше, чем при развитии из спор. Для этих видов характерны мелкие споры, а фрагменты имеют в несколько раз больший первоначальный объем гиф. При формировании микроколоний A. alternatа скорости экспоненциального роста мицелия из разных КОЕ существенно не отличались, возможно, благодаря малой разнице в размерах конидий A. alternatа (d=10-30 мкм) и жизнеспособных мелких фрагментов.
Ветвление мицелия, растущего из разных КОЕ, на первых этапах формирования грибных микроколоний также может отличаться. В экспоненциальной фазе роста в микроколониях, растущих из спор, единица гифального роста (ЕГР) часто была выше (то есть ветвление реже), чем в микроколониях, растущих из фрагментов гиф.
Линейный рост при развитии колоний из фрагментов гиф наступал раньше. Далее в этой фазе скорости мицелия из фрагментов гиф и спор грибов не различались; величина ЕГР стабилизировалась и не зависела от типа исходных КОЕ. То есть, в линейной фазе роста все различия между микроколониями, сформированными из разных КОЕ, нивелировались (Иванова, 1999).
1.1.3 Влияние экологических условий на жизнеспособность мицелия микроскопических грибов
При определении жизнеспособности грибного мицелия разной длины в различных экологических условиях среды, установлено, что увеличение концентрации органического вещества (сахарозы) в интервале 0–20 г/л было благоприятно для фрагментов Mucorhiemalis, способность к росту у которых возрастала (Иванова, 1999). Высокая концентрация сахарозы (100 г/л), наоборот, подавляла рост крупных фрагментов M. hiemalis. Число жизнеспособных фрагментов мицелия разной длины Penicilliumspinulosum больше при низких концентрациях сахарозы, а ее высокое содержание подавляет рост мелких (30–60 мкм) фрагментов. При высоком содержании сахарозы увеличивается доля растущих после взбалтывания на качалке коротких фрагментов (20–100 мкм, или 3–6 клеток) Alternariaalternatа, а жизнеспособность крупных фрагментов гиф (> 130 мкм, или > 9 клеток) не изменялась. Однако, после обработки ультразвуком высокий уровень сахарозы (100 г/л) подавлял рост фрагментов A. alternatа любой длины.
При низких температурах у всех исследованных видов грибов (Alternariaalternata, Mucorhiemalis, Penicilliumspinulosum) было отмечено значительное снижение способности к росту. Наиболее чувствительным оказался вид P. spinulosum, для которого 4 ○ С – это нижний температурный предел роста: при 4 ○ С даже крупные фрагменты практически не растут. Мелкие фрагменты M. hiemalis тоже теряли способность к росту при 4 ○ С. В несколько (4-6) раз уменьшалась жизнеспособность фрагментов A. alternatа.
Максимальная способность к росту мелких фрагментов M. hiemalis отмечалась при 25, 30 ○ С. Жизнеспособность фрагментов A. alternatа практически не изменялась при 20, 25, 30 ○ С. Мелкие и крупные фрагменты P. spinulosum наибольшую способность к росту проявляли при 20 ○ С, при увеличении температуры до 30 ○ С их жизнеспособность снижалась.
Изменение кислотности среды не оказывало существенного влияния на жизнеспособность фрагментов M. hiemalis и A. alternatа. Число способных к росту фрагментов P. spinulosum было наибольшим в нейтральных условиях среды, уменьшение pH от 7,0 до 3,5 приводило к снижению жизнеспособности всех фрагментов P. spinulosum, а мелкие фрагменты в кислых условиях не росли вовсе. С увеличением кислотности наблюдается подавление роста фрагментов мицелия. В варианте с максимальной кислотностью среды (pH 3,0) рост коротких (20–50 мкм) и средней длины (51–100 мкм) фрагментов отсутствовал практически полностью. Наиболее стабильный и сбалансированный рост фрагментов различной длины отмечается в вариантах с нейтральной и слабощелочной реакцией среды – 7,0 и 8,0 pH. При этом активный рост наблюдается и у коротких, и у длинных фрагментов (Григорьев, 2004).
--> ЧИТАТЬ ПОЛНОСТЬЮ <--