Дипломная работа: Исследование влияния частоты переменного электрического поля на яркость люминесценции различных люминофоров

Существует несколько точек зрения относительно при­роды первичного пика волн яркости. Согласно Залму [20], он возникает в результате рекомбинации свободных электронов с центрами ионизации в области возбуждеиия. Из опытов Георгобиани и Фока следует, что первичиый пик на вол­нах яркости обусловлен рекомбинацией ионизованных цент­ров не со свободными электронами, как предполагает Залм, а с электронами, которые были захвачены на ловушках в предшествующий период, а затем освобождены полем. По­скольку в люминофорах ZnS:Сu имеются ловушки разной глубины, следовало ожидать, что при некоторых условиях можно наблюдать несколько первичных пиков. Появление дополнительных первичных пиков действительно наблюдается при увеличении напряжения и частоты, а также при понижении температуры. Вторичный пик, появляющийся при прохождении поля через нулевое значение напряженности, обус­ловлен рекомбинацией центров ионизации с теми электро­нами, которые были ранее отогнаны полем и захвачены на ловушках. В отличие от электронов, участвующих в формировании первичного пика, эти электроны освобождаются с ло­вушек не полем, а термически. Поэтому величина вторичного пика должна в большей степени зависеть от температуры, чем величина первичного, что и было подтверждено в работе Маттле [28].

1.2.2.Зависимость интегральной и мгновенной яркости электролюминесценции от частоты

Из графика зависимости интегральной яркости электро­люминесценции от частоты возбуждающего поля видно, что в определенной области частот интегральная яр­кость свечения при повышении частоты увеличивается почти линейно или сублиейно. При дальнейшем повышении частоты интегральная яркость свечения стремится к насыщению. Частотная зависимость интегральной яркости электролюминесценции изменяется при введении в люминофор примесей Fe, Со и Ni и становится при некоторой концентрации этих элементов сверхлинейной. Люминофоры, которые содержат большие количества Fe, Со и Ni и фотолюминесценция которых почти полностью потушена, обладают яркой электролюминесценцией при высоких частотах.

1.2.3.Зависимость интегральной и мгновенной яркости электролюминесценции от температуры

Зависимость интегральной яркости электролюминесценции от температуры выражается кривой с максимумом, расположенным обычно в области положительных температур. Положение максимума зависит от химической природы люми­нофора, от наличия в нем тушащих примесей и от частоты приложенного напряжения.

Чем выше частота возбуждающего поля, тем больше сдвигается максимум этой кривой в область высоких температур. Кривые температурной зависимости яркости электролюми­несценции обычно не совпадают по положению максимумов с кривыми термического высвечивания при возбуждении электрическим полем и смещены в область более высоких температур. Таким образом, возрастание яркости электролю­минесценции при повышении температуры нельзя просто объ­яснить термическим освобождением электронов с ловушек.

1.3. ДЕЙСТВИЕ НА ЛЮМИНОФОРЫ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

Инфракрасные лучи оказывают влияние на люминесцен­цию тех люминофоров, которые имеют глубокие уровни захвата (ловушки) и обладают способностью запасать значительную светосумму. К ним относятся люминофоры на цинк­сульфидной основе (или на основе ZnS-CdS), активирован­ные различными элементами, и люминофоры на основе сульфидов щелочноземельных металлов.

Под действием инфракрасных лучей происходит либо рез­кое повышение интенсивности люминесценции: (вспышка), либо ослабление (тушение). Аналогичное действие оказывают инфракрасные лучи на фотопроводимость.

Появление вспышки или тушения люминесценции зависят от того, действуют ли инфракрасные лучи на люминофор в момент его возбуждения или во время затухания люминесценции, а также от температуры исостава люминофора. Ин­тенсивность вспышки и коэффициент тушения зависят от интенсивности возбуждающего света, интенсивности инфра­красного излучения и длины его волны. B случае цинксуль­фидных люминофоров максимальная вспышка имеет место при действии инфракрасного излучения с длиной волны 1200 нм. Зависимость коэффициента тушения от длины волны инфракрасного излучения по данным Ребане ­[29] определяется составом люминофора. Для ZnS:Сu наибольшее тушение наблюдается при длинах волн 800 и 1200-1300 нм.

При одновременном действии возбуждающего света и инфракрасных лучей на цинксульфидные люминофоры при комнатной температуре имеет место только эффект тушения люминесценции, который тем больше, чем меньше интенсив­ность возбуждающего света. Коэффициент тушения увеличи­вается при повышении интенсивности инфракрасных лучей до известных пределов. Заметное влияние на величину коэффи­циента тушения оказывает также концентрация активатора и присутствие в люминофоре примесей некоторых металлов (никеля, кобальта, железа) так называемых гасителей люминесценции, введение которых приводит к значительному (особенно при добавлении кобальта) увеличению коэффици­ента тушения. Повышение концентрации активатора обычно приводит к ослаблению эффекта тушения.

Вспышка у цинксульфидных люминофоров при одновре­менном действии инфракрасных лучей и возбуждающего света наблюдается только при низкой температуре. При обыч­ных температурах у этих люминофоров вспышка имеет место в том случае, если люминофор подвергается действию инфракрасных лучей после прекращения возбуждения (в процессе затухания). Интенсивную вспышку в этом случае можно по­лучить, если в люминофор ZnS:Рb ввести медь. Спектр из­лучения вспышки у люминофора ZnS:Сu,Рb совпадает с излучением полосы свинца в этом люминофоре. Введение меди увеличивает эффект стимуляции и в случае люминофора ZnS:Mn. Предполагается, что медь может служить источни­ком электронов, запасаемых на ловушках, образованных свинцом [30]. Люминофоры, которые дают наиболее интенсивную вспышку при облучении их инфракрасными лучами после прекращения возбуждения, относятся к классу сульфи­дов щелочноземельных металлов, активированных редкоземельными элементами [30]. Эти люминофоры, называемые обычно вспышечными, нашли широкое применение в ряде специальных приборов (дозиметры, приборы ночного ви­дения и т. д.). К вспышечным люминофорам относятся, например, SrS:Се,Sm, SrS:Еu:Sm, а также SrS-CaS:Еu,Sm. Спектр вспышки определяется Се или Еu, а введение Sm увеличивает интенсивность вспышки и опре­деляет спектр стимуляции, т. е. зависимость интенсив­ности вспышки от длинны волны инфракрасного света.

Явления вспышки и тушения люминесценции при действии инфракрасных лучей имеют различное толкование. В самом общем виде явление вспышки объясняется тем, что под действием инфракрасных лучей электроны, находящиеся на ловушках, могут перейти в зону проводимости и затем рекомбинировать с центрами люминесценции. Тушение люминесценции происходит тогда, когда энергия инфракрасных лучей оказывается достаточной. для переноса электрона из валентной зоны на уровни ионизованных активаторов. Это приводит к уничтожению. положительного заряда на уровнях активатора и, следовательно, к уменьшению числа переходов, сопровождающихся излучением света. Дырки, образовав­шиеся в валентной зоне, могут перемещаться в ней и перехо­дить на уровни активатора. Введение Со, Ni и Fe способствует образованию дополнительных уровней захвата. Рекомбинация электронов на этих уровнях с дырками из ва­лентной зоны уменьшает вероятность перехода дырок на уровни активатора. Этим объясняется усиление эффекта ту­шения при введении в люминофор Со, Ni и Fe [31].

Электрическое поле, приложенное к фотолюминесцирующему материалу, подобно инфракрасному излучению способно вызывать вспышку, либо тушение фотолюминесценции.

Процесс одновременного действия на фотолюминофор электрического поля и возбуждающего излучения называется электрофотолюмЀнесценцией.

1.4. ЭЛЕКТРОФОТОЛЮМИНЕСЦЕНЦИЯ

1.4.1. Эффекты Гуддена - Поля и Дэшена

Давно известно, что приложение сильных электрических полей (постоянных или переменных) может существенно по­влиять на поведение фотолюминесцирующих материалов, возбуждаемых ультрафиолетовым светом. Эти эффекты можно наблюдать и во время периода затухания, следующего за прекращением действия возбуждающего света; первоначально они были обнаружены именно та­ким образом. В самых общих чертах различают уси­ление интенсивности света при наложении поля, назы­ваемое эффектом Гуддена - Поля,и гашение, именуемое эффектом Дэшена. Эффект Гуддена - Поля можно наблюдать, когда фосфор на­дежно изолирован от металлических электродов, к кото­рым прикладывается поле, в то время как для эффекта Дэшена, по-видимому, более благоприятны такие усло­вия, когда через фосфор проходит ток заметной вели­чины. Прикладываемые поля должны иметь напряжен­ность порядка нескольких киловольт на сантиметр. Оба эффекта могут наблюдаться совместно, причем эффект Гуддена - Поля обычно характеризуется меньшими по­стоянными времени.

На рис 5(a) показан суммарный эффект, который может наблюдаться в том случае, когда приложенное поле постоянно.

Относительная четкость различных деталей может довольно сильно изменяться от образца к образцу. В случае переменного, поля на кривую яркости света накладывается пульсация, которая, как правило, имеет сложную форму. При достаточно больших напря­женностях поля частота этой пульсации вдвое больше частоты поля. Пунктирная кривая соответствует слу­чаю, когда эффект Дэшена отсутствует. Обычно в тот момент, когда выключается внешнее поле, происходит небольшое усиление, но в некоторых случаях его нельзя заметить. Этот частный вид релаксации может быть очень быстрым, как наблюдалось, например, для одного из фосфоров, изучавшихся Штейнбергером, Лоу и Але­ксандером [32].

Детали этих эффектов сложным образом связаны как с напряженностью и характером поля, так и с ин­тервалом времени между моментом его включения и началом оптического возбуждения.

На рис. 5(б) пока­зано, например, как в течение затухания фотолюминес­ценции уменьшается величина световых импульсов в эффекте Гуддена - Поля. Перед началом основного спада наблюдается интересное и трудно объяснимое увеличение яркости, которое может служить, одним из примеров сильно усложненных и взаимосвязанных свойств этого явления. В магнитном поле соответствующие эффекты не наблюдались [33].

Как известно, процессы затухания в возбужденных фосфоресцирующих материалах могут быть ускорены инфракрасным излучением. При этом суммарное коли­чество излучаемой световой энергии остается постоян­ным независимо от того, ускоряется ли процесс затуха­ния или происходит спонтанно. Рассматриваемые же эффекты принципиально отличаются от подобного уско­ренного оптическим путем затухания, поскольку при наличии электрического поля величина интеграла по времени от выходящей световой энергии может суще­ственно измениться. Например, при эффекте Гуддена - Поля полное количество света, излучаемого в течение затухания, может увеличиться.

Во время освещения вещества электроны возбуж­даются за счет поглощения фотонов; когда оптическое возбуждение прекращается, в возбужденных состояниях будет находиться ограниченное число электронов. Поэтому действие внешнего поля, которое увеличивает полное количество излучаемого света, должно сказы­ваться в одном из двух направлений (или в обоих сразу) либо увеличивать относительную вероятность излучатель­ной рекомбинации (по сравнению с безызлучательной), либо приводить к дополнительному возбуждению элек­тронов. Последняя возможность представляется более правдоподобной. Однако Матосси [34] пересмотрел эти вопросы и в противопо­ложность последнему предположению связал эффект гашения с р?

К-во Просмотров: 229
Бесплатно скачать Дипломная работа: Исследование влияния частоты переменного электрического поля на яркость люминесценции различных люминофоров