Дипломная работа: Кристалоквазіхімія дефектів Фізико-хімічні властивості легованих кристалів телуриду кадмію

6. Мінімальний радіус сфери, вписаної в тетрапорожнину

rt min

rt min = yt – R

7. Мінімальний радіус сфери, вписаної в октапорожнину

ro min

ro min = yo - R

8. Максимальний радіус сфери, вписаної в тетрапорожнину

rt max

rt max = rt min √3/2

9. Максимальний радіус сфери, вписаної в октапорожнину

ro max

ro max = ro min √3/2

Елементарний тетраедр і октаедр, утворені з щільної упаковки шарів халькогену або металу показані на рис. 4. Для сфалериту і в’юрциту кристалічна решітка складається з двох підрешіток утворених із атомів II i VI груп періодичної системи. В такій решітці виникають вже два типи тетрапорожнин (t1, t2 ) і два типи октапорожнин (o1, o2 ), які відрізняються оточенням, тому розраховували радіуси ТП і ОП в оточені телуру і металу.

Рис. 4. Елементарний тетраедр (а), октаедр (б), утворені аніонною і катіонною упаковкою шарів: Т – центр тетраедра, О – центр октаедра, а1 – ребро тетраедра, h – висота тетраедра.

Геометричні характеристики тетра- і октапорожнин дозволяють визначити радіуси сфер (атомів) rt min , ro min (табл. 5), які в них можуть бути вписані. Існує обмеження на rt , ro , тобто радіуси вписаних сфер не можуть приймати значення, яке перевищує rt max , ro max . Їх можна визначити із порушення щільної упаковки сфер, коли вони не дотикаються одна до одної. Тоді проходить ніби збільшення ефективних розмірів сфер основної будови настільки, що, висота утвореного ними нового тетраедра h1 буде рівна або перевищить 2R. Так як h¢ = 2r¢ Ö2/3, тоді прирівнюючи h¢ = 2R, одержимо r¢ = rÖ3/2. Звідси можна знайти гранично допустиме значення радіусів сфер вписаних в порожнини rt max і ro max .[12].


2. Характеристика областей існування структур сфалериту і в’юрциту

Cтруктура в’юрциту для ZnS – стійка при високих температурах. Фазовий перехід із гексагональної модифікації ZnS в кубічну проходить при температурах 1020 і 1150 0 С [2]. В [4] показані поліморфні пари, зв’язані переходом під тиском, які зачіпають зміну першої координації для ZnO тиск переходу 100 кбар: низькотемпературна форма – в’юрцит, перша координація 4:4; високотемпературна форма – NaCl, перша координація 6:6. Для СdS тиск переходу 20 кбар: низькотемпературна форма – сфалерит,перша координація 4:4; високотемпературна форма – NaCl, перша координація 6:6. Зміна другої координації для CdS проходить при тиску 160-200 кбар, при низькому тиску структурний тип сфалерит; привисокому тиску в’юрцит. Для CdS структурна зміна при збільшені тиску обернена тій, яка викликається пониженням температури.

Перехід із тетраедричної до октаедричної координації супроводжується зменшенням об’єму приблизно на 20 %. Незалежно від того чи має вихідний матеріал структуру в’юрциту чи цинкової обманки, при зворотньому переході до атмосферного тиску зберігається структура цинкової обманки [2].

Можливість зв’язати тип стабільної структури А2 В6 з співвідношенням іонності і ковалентності хімічного зв’язку розроблено авторами [5] (табл. 3).

Таблиця 3

Зв’язок стабільні структури А2 В6 з коефіцієнтом іонності

А2 В6

l,%

Стабільна структура

D(с/а)

А2 В6

l,%

Стабільна структура

D(с/а)

ZnO

К-во Просмотров: 325
Бесплатно скачать Дипломная работа: Кристалоквазіхімія дефектів Фізико-хімічні властивості легованих кристалів телуриду кадмію