Дипломная работа: Матемитические основы моделирование 3d объектов

Предполагается, что:

1. подсистема Si сложной системы, как и вся система S в целом, функционирует во времени, и в каждый момент времени t она находится в одном из возможных состояний Si (t);

2. с течением времени подсистема и система в целом под воздействием внешних и внутренних факторов переходят из одного состояния в другое;

3. в процессе функционирования системы (или подсистемы) она взаимодействует с внешней средой и другими системами, получая от них входной поток X(t) и выдавая выходной поток Y(t) событий, энергетических или материальных объектов.

Эффективность функционирования системы S, как правило, оценивается условной вероятностью достижения цели F(S) к заданному моменту времени. Целью функционирования системы S обычно является достижение определенного результата: обслуживание заданного количества заявок, поражение заданных объектов, решение заданных задач, производство определенного продукта и так далее. Существует несколько способов математической формализации таких процессов. К ним относятся: Марковские процессы, сети Петри, семантические сети, конечные автоматы и алгоритмы. Перечисленные математические формализмы хорошо изучены и достаточно полно изложены в литературе. Построение математических мо?

К-во Просмотров: 216
Бесплатно скачать Дипломная работа: Матемитические основы моделирование 3d объектов