Дипломная работа: Методика изучения объемов многогранников в курсе стереометрии

Курсу присущи систематизирующий и обобщающий характер изложения, направленность на закрепление и развитие умений и навыков, полученных в неполной средней школе. При доказательстве теорем и решении задач активно используются изученные в курсе планиметрии свойства геометрических фигур, применяются геометрические преобразования, векторы и координаты. Высокий уровень абстрактности изучаемого материала, логическая строгость систематического изложения соединяются с привлечением наглядности на всех этапах учебного процесса и постоянным обращением к опыту учащихся. Умения изображать важнейшие геометрические тела, вычислять их площади поверхностей и объемы имеют большую практическую значимость.

Другой подход к структурированию курса математики старших классов связан с реализацией профильной дифференциации обучения. Вводятся два курса – курс А и курс В разного объема и уровня.

Курс А ориентирован на тех учащихся, которые рассматривают математику как элемент общего образования и не предполагают использовать ее непосредственно в своей будущей профессии. Этот курс представлен одним предметом математикой, в котором в разумной последовательности чередуются сведения алгебры и начал анализа с геометрическим материалом.

Цель изучения курса А в 10-11 классах – дать учащимся представление о роли математики в современном мире, о способах применения математики как в технических, так и в гуманитарных сферах. При изучении в этом курсе элементов анализа опора делается на наглядно-интуитивное представление учащихся, роль формальных рассуждений и доказательств невелика. Изучение геометрического материала также широко опирается на наглядность. Существенно снижается внимание к идее аксиоматического построения курса стереометрии. Основной акцент делается на формирование умений применить изученные факты в простейших случаях.

Курс В предназначен для учащихся, выбравших для себя те области деятельности, в которых математика играет роль аппарата, специфического средства для изучения закономерностей окружающего мира. В рамках этого курса сохраняются традиции деления на два предмета – алгебра и начала анализа и геометрия.

Изучение алгебры и начал анализа и геометрии как составляющих курса В предполагает реализацию тех же целей, которые ставятся перед этими математическими дисциплинами в общеобразовательном курсе, но на более высоком и усложненном уровне [36].

Изучение программного материала по теме «Объемы многогранников» дает возможность учащимся:

· получить представление о широте применения геометрии в различных областях человеческой деятельности; познакомиться с некоторыми фактами истории геометрии;

· усвоить систематизированные сведения о пространственных формах;

· научиться проводить аналогию плоскими и пространственными конфигурациями, видеть общность и различие свойств аналогичных структур на плоскости и в пространстве, использовать планиметрические сведения для описания и исследования пространственных фигур;

· научиться иллюстрировать и моделировать проекционным чертежом пространственные формы, решать позиционные задачи (в частности, задачи на сечения) на проекционном чертеже;

· решать задачи на нахождение площадей поверхностей и объемов тел, на вычисление линейных и угловых элементов пространственных конфигураций;

· решать задачи на доказательство;

· овладеть набором приемов, часто применяемых для решения стереометрических задач на вычисление и доказательство.

Уровень обязательной подготовки по теме «Объемы многогранников» ограничивается следующими требованиями:

· уметь распознавать на моделях и по описанию основные пространственные тела (призма, пирамида), указывать их основные элементы, узнавать эти формы в окружающих предметах;

· уметь иллюстрировать условие стереометрической задачи либо чертежом, либо моделью;

· уметь вычислять значение геометрических величин (длин, площадей, объемов), применять изученные формулы;

· уметь решать несложные задачи на вычисление с использованием изученных свойств и формул (свойства параллельности прямых и плоскостей, многогранников и тел вращения).

В содержание материала по теме «Объемы многогранников» входят разделы: «Объем прямоугольного параллелепипеда». «Объемы прямой призмы и цилиндра». «Объемы наклонной призмы, пирамиды и конуса». «Объем шара и площадь сферы». «Объемы шарового сегмента, шарового слоя и шарового сектора».

Это обязательный минимум, которым должны овладеть учащиеся, изучая тему «Объемы многогранников».


§ 2 Анализ учебников геометрии 10-11 классов

Исходя из требований программы, различные авторские коллективы предлагают ряд учебников геометрии 10-11 классов. Рассмотрим некоторые из них.

Учебник [7] является продолжением и развитием учебника для 7-9 классов того же авторского коллектива. Изложение теоретического материала более строгое, чем на предыдущей ступени обучения. Теоретические тексты кратки и доступны. Система упражнений последовательна, содержит задачи разного уровня сложности, примеры решения наиболее важных задач, причем данные решения наиболее трудных задач потребуются ученикам как опорные, при доказательстве теорем, следствий из теорем и т. д. Имеются дополнительные задания, которые идут после всей главы. Для решения этих задач необходимо знать не только материал изученной главы («Объемы тел»), но и применить знания, умения и навыки, полученные при изучении других тем. В процессе их решения очень хорошо развивается логика, воображение. Другими словами можно сказать, что при решении дополнительных задач у учащихся развиваются три качества: пространственное воображение, практическое понимание и логическое мышление.

На изучение темы «Объемы тел» отводится 19 ч. Входят такие разделы, как: объем прямоугольного параллелепипеда, объемы прямой призмы и цилиндра, объемы наклонной призмы, пирамиды и конуса, объем шара и площадь сферы, объемы шарового сегмента, шарового слоя и шарового сектора.

Основная цель – продолжить систематическое изучение многогранников и тел вращения в ходе решения задач на вычисление их объемов. В курсе стереометрии понятие объема вводится по аналогии с понятием площади плоской фигуры, и формулируются основные свойства объемов. Существование и единственность объема тела в школьном курсе математики приходится принимать без доказательства, так как вопрос об объемах принадлежит, по существу, к трудным разделам высшей математики. Поэтому нужные результаты устанавливаются, руководствуясь больше наглядными соображениями. Учебный материал главы в основном должен усваиваться в процессе решения задач.

Основная теория в начале курса стереометрии изучается с опорой на геометрические тела, что повышает доступность материала, а значит, и результативность обучения.

Учебник И. Ф. Шарыгина [11] реализует авторскую наглядно-эмпирическую концепцию построения школьного курса геометрии. Его характеризует отказ от аксиоматического метода и акцент на использование наглядных методов в процессе построения теории и решения задач. В учебнике нетрадиционно изложены многие необходимые теоретические факты. Их доказательства оригинальны и, что немаловажно, красивы. Учебные тексты написаны хорошим литературным языком.

Теоремы в учебнике нацелены не столько на «прохождение программы», сколько на создание необходимого запаса сведений для решения задач. Например, весьма интересно изложен раздел «Объемы», в котором имеются теоремы, обычно не рассматриваемые в школе. Доказательства этих теорем поучительны сами по себе, а владение ими дает запас фактов и приемов, позволяющих решать довольно трудные задачи.

К-во Просмотров: 446
Бесплатно скачать Дипломная работа: Методика изучения объемов многогранников в курсе стереометрии