Дипломная работа: Методика преподавания темы "Программирование в среде Scratch" учащимся начальной школы
Из рассмотренных примеров следует вывод о том, что лишь при наличии обратной связи алгоритмы управления исполнителем могут иметь сложную структуру, содержащую циклы и ветвления. Без обратной связи алгоритмы могут быть только линейными.
На примере исполнителя Робота вводится понятие вспомогательного алгоритма и метода последовательного уточнения (нисходящего проектирования; программирования сверху вниз). Пример использования Робота в учебнике [20] доказывает, что ограничиваясь исполнителями и алгоритмами, работающими без величин, можно успешно обучать структурной методике программирования.
В язык Робота постепенно включается использование величин со всеми их атрибутами: именем, значением, типом. Все команды Чертежника, кроме «поднять перо», «опустить перо», используют параметры, которые являются величинами.
Языком описания алгоритмов для всех исполнителей является учебный алгоритмический язык (АЯ). За основу взята версия АЯ, описанная в учебнике А.П. Ершова [11]. Однако введены некоторые модификации в изобразительные средства языка. Введение в учебнике [20] всякой новой конструкции алгоритмического языка происходит по одинаковой методической схеме:
· рассматривается новая задача, требующая введения новой конструкции;
· описывается алгоритм решения этой задачи;
· дается формальное описание данной конструкции в общем виде.
Наряду с алгоритмами для Робота и Чертежника в учебнике [20] рассматриваются алгоритмы вычислительного характера, ориентированные на универсального исполнителя обработки информации – компьютер. Это типовые задачи обработки числовой и символьной информации: вычисление числовых последовательностей, обработка массивов, литерных строк и пр. Рассматриваются также алгоритмы решения содержательных задач методами математического моделирования.
В целом можно сказать, что в учебнике [20] алгоритмическая линия школьной информатики проработана наиболее полно и последовательно как в содержательном, так и в методическом плане.
Алгоритмическая линия в учебнике А.Г. Гейна [6] реализована по двум направлениям. Первое направление заключается в использовании учебных исполнителей алгоритмов, работающих «в обстановке», подобно тому, как это делается в учебнике [20]. Второе направление заключается в обучении построению вычислительных алгоритмов для решения задач математического моделирования.
В учебнике [6] также применен исполнитель с названием «Чертежник», который относится к категории исполнителей, работающих по принципу «черепашьей графики». В отличие от Чертежника из учебника А.Г. Кушниренко, его команды перемещения (сделать шаг, прыгнуть) и вращения (повернуть налево) не имеют параметров. По одной команде исполнитель перемещается на строго определенное расстояние – один шаг, или поворачивается против часовой стрелки на 90°. Поэтому создаваемые рисунки могут состоять только из горизонтальных и вертикальных отрезков. В этом смысле изобразительные возможности данного исполнителя более скромные, чем у Чертежника А.Г. Кушниренко. Можно сказать, что Чертежник А.Г. Гейна в чистом виде является исполнителем, работающим «в обстановке».
Для моделирования методов решения задач обработки табличной информации в [6] введен исполнитель Робот-манипулятор. Прямоугольная таблица имитируется стеллажом, состоящим из ячеек, в которые могут быть помещены различные радиодетали (микросхемы, транзисторы и пр.). Робот умеет перемещаться в вертикальном и горизонтальном направлениях вдоль ячеек, помещать в них детали или извлекать детали из ячеек. Здесь можно говорить о появлении величин, рассматривая имя детали в ячейке как величину (производится сравнение ее имени с именем искомой детали). Характерная структура алгоритмов управления Роботом – вложенные циклы с ветвлениями.
Второе направление алгоритмической линии в учебнике [6] – алгоритмы решения вычислительных задач. Для построения таких алгоритмов используется учебный исполнитель Вычислитель. Это исполнитель, работающий только с числовыми величинами. Поскольку в качестве языка программирования для реализации вычислительных алгоритмов на ЭВМ используется Бейсик, то и язык Вычислителя «бейсикообразен». Несмотря на неструктурный характер используемой версии Бейсика, авторы стараются оставаться в рамках структурного подхода. В частности, это проявляется в том, что в языке Вычислителя отсутствует команда перехода.
Для моделирования понятия переменной применительно к Вычислителю используется образ ящика. Имя переменной – это буква, записанная на «ящике», а присваиваемое ей значение – это величина (число), помещаемое в «ящик». Составление программы на Бейсике по данному алгоритму интерпретируется как перевод с языка Вычислителя на язык Бейсик. При этом «ящики» для переменных заменяются на ячейки памяти ЭВМ, а при записи программы требуется строго соблюдать правила синтаксиса Бейсика. Для программирования цикла с предусловием в учебнике предлагается использовать стандартный способ его реализации с помощью операторов IFGOTO (для версий Бейсика, в которых нет оператора WHILE).
В учебнике В.А. Каймина и др. [13] не применяется методика учебных исполнителей. Изучение алгоритмизации ориентируется на исполнителя-ЭВМ. Для описания алгоритмов используется алгоритмический язык, близкий к варианту А.П. Ершова. Блок-схемы практически не используются. В учебнике [13] рассматриваются вычислительные задачи, а также задачи на построение графических изображений. Языком реализации алгоритмов на ЭВМ является Бейсик. Как и в учебнике [6], авторы уделяют внимание стандартным приемам программирования на неструктурном Бейсике циклов и ветвлений.
В учебнике третьего поколения А.Г. Гейна и др. [7] существенно изменился подход к обучению алгоритмизации и программированию по сравнению с учебником [6] того же авторского коллектива. Введен новый учебный исполнитель Паркетчик. Для того, чтобы подчеркнуть формальный характер работы исполнителей алгоритмов, авторы используют термин «Бездумные исполнители» – БИ. Таким образом, Паркетчик представляет из себя БИ, назначение которого – выкладывать на клетчатом поле узоры из разноцветных плиток (красных и зелёных). Поле имеет прямоугольную форму; каждая клетка идентифицируется двумя индексными номерами – г по горизонтали и по вертикали, например: (1,1), (3,5) и т.п.
Паркетчик может перемещаться с помощью команд «шаг вверх», «шаг вниз», «шаг влево», «шаг вправо» к соседним клеткам, а также к любой клетке поля по команде «перейти на (т, п)». В текущую клетку Паркетчик может положить плитку указанного цвета по команде «положить (цвет)» или убрать плитку по команде «снять плитку». Условиями в командах ветвления и цикла может быть проверка цвета лежащей плитки или проверка наличия препятствия (стены) в любом направлении от текущей клетки.
Паркетчик предназначен для методичного обучения структурному способу построения алгоритмов. Форма языеа Паркетчика применяется также и для описания вычислительных алгоритмов, подобно тому, как используется алгоритмический язык в учебнике А.Г. Кушниренко [20]. По сути дела, между алгоритмическим языком и языком Паркетчика нет принципиальной разницы. И тот и другой представляет собой структур