Дипломная работа: Методика решения задач повышенной трудности в старших классах средней школы
По характеру мыслительной деятельности различают стандартные и нестандартные задачи. К стандартным относятся задачи, которые имеют определенный алгоритм решения (алгоритмически разрешимые задачи). Задачи, не имеющие общего алгоритма решения, называются нестандартными. Нестандартные задачи имеют отчетливо выраженную развивающую функцию. Функции решаемой стандартной задачи зависят от того, какими теоретическими знаниями обладают учащиеся к моменту ее решения. Если учащимся известен алгоритм решения этой задачи, то ее можно считать шаблонной. Если к моменту решения стандартной задачи общий метод ее решения не известен, то такая задача является нешаблонной (при ее решении необходимо обнаружить общий метод решения или применить какой-либо искусственный прием). Нестандартные и нешаблонные задачи (вследствие общности их функции в обучении) можно объединить в одну группу - группу творческих задач.
По целям применения задач в учебном процессе выделяют задачи подготовительные, задачи на закрепление, на приобретение новых знаний, на развитие мышления.
В начальных классах ученики рассматривают и решают разнообразные задачи, большинство которых содержит числовые данные. Кроме того, учащиеся должны познакомится с решением задач, в которых значения одной – двух величин выражены буквами. Эти задачи подводят учеников к более широким обобщениям и служат вводным материалом к изучению алгебры. Сюжет некоторых решаемых в начальных классах задач построен на геометрическом материале, то есть в них идет речь о фигурах и протяженности. Большинство этих задач назвать геометрическими в полном смысле нельзя.
Таким образом, основное внимание обращается на рассмотрение задач с числовыми данными, при решении которых используют как арифметические, так и алгебраические методы. Среди математических задач различают задачи простые и составные .
К простым задачам относят те, которые можно решить одним действием. Задачи, которые составлены из нескольких простых и поэтому решаются с помощью двух и более действий, называют составными задачами .
К любой простой задаче можно составить две обратные задачи, то есть две такие задачи, у каждой из которых в тот же сюжет искомое число из прямой задачи включено в виде одного из данных, а в качестве искомого выступает число, известное из условия прямой задачи.
Кроме того, среди простых задач выделяются задачи, выраженные в косвенной форме.
В зависимости от тех понятий, которые рассматриваются в курсе математики начальных классов, простые задачи делят на три группы.
Первая группа включает простые задачи, при которых учащиеся усваивают конкретный смысл каждого из арифметических действий. 1) Нахождение суммы. 2) Нахождение остатка. 3) Нахождение суммы одинаковых слагаемых. 4) Деление на равные части; деление по содержанию.
Вторая группа включает простые задачи, при решении которых учащиеся усваивают связь между компонентами и результатами арифметических действий. Это простые задачи на нахождение неизвестного компонента.
Третья группа – простые задачи, при решении которых раскрываются понятия разности и кратного отношения.
Однако, рассматривая различные подходы к классификации простых задач, Л.В. Занков замечает, что ни одна классификация не позволяет установить последовательность, в какой следует рассматривать их при обучении детей решению задач. Это является существенным недостатком различных классификаций. Однако, зная принципы классификации простых задач, учитель с меньшей затратой труда и времени научит школьников правильно находить, каким действием решается та или иная задача [11,12].
Методика располагает достаточно обоснованными суждениями о значении и системе использования простых задач в начальных классах. Простые задачи нужны ученику для того, чтобы:
1) ознакомиться со структурой математической задачи;
2) выработать у ребенка сознательное отношение к выбору действия, которое нужно произвести для нахождения ответа на вопрос задачи; задачи помогают раскрыть смысл действий;
3) увидеть элементарные функциональные зависимости между величинами, входящими в условие, понять связь между компонентами действий;
4) связать различные математические упражнения с жизнью, что повышает у детей интерес к предмету, оживляет процесс овладения навыками;
5) работа с изменением текста простой задачи позволяет ученику овладеть более отвлеченными математическими понятиями, переходить к обобщениям и абстрагированию;
6) готовить ученика к пониманию решения разнообразных составных задач [15].
1.2 Обучение поиску решения задач
С чего начинать решение задачи? Движение вашей мысли, как заметил известный советский психолог П.Я. Гальперин, не должно быть «броуновским», т.е. беспорядочным. Главное - нужно сделать глубокий и всесторонний анализ задачи.
Решить математическую задачу ‑ это значит найти такую последовательность общих положений математики (определений, аксиом, теорем, правил, законов, формул), применяя которые к условиям задачи или к их следствиям (промежуточным результатам решения) получаем то, что требуется в задаче, ‑ ее ответ.
Основными методами поиска решения задач являются анализ и синтез. Благодаря анализу осуществляется целенаправленная актуализация знаний (знания актуализируются не механически, наугад, «вслепую», а в связи с потребностью в них). В ходе анализа естественно определяются момент использования знаний (не тогда, когда вспоминаешь, а тогда, когда нужно), выбор знаний (берутся лишь те знания, в которых возникла потребность при анализе), форма использования знаний (не так, как в учебнике, а в том виде, в каком это удобнее для решения задачи) и характер использования знаний (все сразу или поочередно).
Ранее были рассмотрены анализ Паппа и анализ Евклида. Они применимы и при поиске решений задач. Каждый из этих анализов имеет свою область применения. Например, при поиске решений текстовых задач с помощью уравнений более удобным является анализ Евклида: искомая величина обозначается через х и на основе текста задачи выводятся следствия до тех пор, пока не будет получено уравнение, связывающее искомую величину х с данными величинами. Поиск решения текстовых задач (решаемых арифметическими средствами) удобнее вести с помощью анализа Паппа. Поиск решения таких задач начинают с вопроса задачи и определяют, какие величины надо знать, чтобы ответить на этот вопрос. Далее выясняют, являются ли эти величины известными. Если некоторые из них не даны в условии задачи, то ставится вопрос, как можно найти такие величины, что необходимо знать для этого. Подобные вопросы повторяют до тех пор, пока не обнаружится, что нахождение «промежуточных» неизвестных величин сводится к вычислениям с данными величинами.
Таким образом, при решении задач можно выделить следующие общие приемы мыслительной деятельности: первый прием - прием развертывания термина, он состоит в выведении всевозможных следствий из условия задачи или в выяснении всевозможных свойств объектов, о которых говорится в задаче. Второй прием - анализ через синтез - «челнок» состоит в чередовании восходящего анализа и синтетических рассуждений. Эти два приема подводят к формированию плана решения задачи. Третий прием - прием построения дедуктивных умозаключений. Именно эти приемы должны быть отработаны с учащимися.
В заключение отметим, что большинство приемов поиска решения задач базируется на достаточно серьезном логическом содержании, поэтому овладение ими учащимися возможно лишь при условии систематического и целенаправленного их применения. Полезно практиковать в этих целях краткий методологический комментарий, разъясняющий учащимся суть применяемых приемов поиска решения задач [10,12].
Сам процесс решения задач при определенной методике оказывает весьма положительное влияние на умственное развитие детей, поскольку он требует выполнения умственных операций анализа и синтеза, абстрагирования и конкретизации, сравнения, обобщения.
Существуют различные методические подходы к обучению детей решению текстовых задач. Но какую бы методику обучения ни выбрал учитель, ему надо знать, как построены такие задачи, и уметь их решать разными способами.
Итак, любая текстовая задача – как считает Л.П. Стойлова – есть описание на естественном языке какого-либо явления (ситуации или процесса) с требованием дать количественную характеристику какого-либо компонента этого явления, установить наличие или отсутствие некоторого отношения между компонентами или определить вид этого отношения. М.И. Моро, А.М. Пышкало определяют задачу, как сформулированный словами вопрос, ответ на который может быть получен с помощью арифметических действий.