Дипломная работа: Методика роботи над простими задачами, що розкривають конкретний зміст арифметичних дій
Один будинок збудували за 10 тижнів, а другий за 8. На скільки тижнів менше затратили на будівництво другого будинку?
3) Збільшення числа на кілька одиниць (пряма форма). Один будинок збудували за 8 тижнів, а на будівництво другого будинку затратили на 2 тижні більше. Скільки тижнів затратили на будівництво другого будинку?
4) Збільшення числа на кілька одиниць (непряма форма).
Один будинок будували 8 тижнів, це на 2 тижні менше, ніж будували другий будинок. Скільки тижнів будували другий будинок?
5) Зменшення числа на кілька одиниць (пряма фірма).
Один будинок будували 10 тижнів, а другий збудували на 2 тижні швидше. Скільки тижнів будували другий будинок?
6) Зменшення числа на кілька одиниць (непряма форма).
Один будинок будували 10 тижнів, це на 2 тижні більше, ніж будували другий будинок. Скільки тижнів будували другий будинок?
Ці основні види простих задач не вичерпують всієї різноманітності задач. Порядок введення простих задач підлягає змісту програмного матеріалу. В І класі вивчають дії додавання і віднімання і в зв'язку з цим розглядають прості задачі на додавання і віднімання. У II класі у зв'язку з вивченням дій множення і ділення вводять прості задачі, які розв'язуються за допомогою цих дій [2].
Щоб розв'язати просту задачу, учень повинен виділити в ній відоме й невідоме, а потім вибрати арифметичну дію чи скласти рівняння, за допомогою яких знайти невідоме. Для цього треба-перевести на математичну мову відношення між даними і шуканими величинами, про які йдеться в задачі, а це учень зможе зробити, якщо розумітиме конкретний зміст арифметичних дій, зміст дій у поняттях «збільшити», «на більше», а також знати зв’язки між компонентами і результатами дій.
Зміст арифметичних дій (в широкому розумінні), зв'язків між компонентами і результатами дій розкривають на основі відповідних операцій над множинами предметів, розв'язування прикладів, повідомлення правил тощо.
Наше дослідження присвячене роботі над задачами першої групи – це задачі на знаходження суми, остачі, добутку, на ділення. Задачі на знаходження суми й остачі — це перші задачі, з якими зустрічаються діти, а тому робота над ними пов'язана з додатковими труднощами: тут учні ознайомлюються, власне, із задачею та її частинами, а також із деякими загальними прийомами роботи над задачею [15, 71].
Отже, на сучасному етапі розбудови початкової математичної освіти розв’язування простих текстових задач у навчанні математики переслідує такі цілі: формування в учнів загального підходу, загальних умінь і здібностей розв’язання будь-яких задач; пізнання і більш глибоке оволодіння математичними поняттями, що вивчаються, і деякими загальнонауковими й загальножиттєвими поняттями; оволодіння поняттями моделі й моделювання і власне математичним моделюванням; розвиток мислення, кмітливості учнів, їх творчого потенціалу.
1.2 Психологічні особливості розвитку математичного мислення молодших школярів під час розв’язування простих задач
Одним із завдань навчання математиці у початкових класах є забезпечення рівня математичної культури, необхідного для повноцінної участі школярів у навчальній діяльності. Математика є унікальним засобом формування не тільки освітнього, а й розвиваючого та інтелектуального потенціалу особистості. Зокрема, перед педагогом постає проблема розвитку математичного мислення учнів, тобто теоретичного мислення, побудованого на об'єктах математики. Це є також важливим фактором успішного оволодіння молодшими школярами математичною наукою. У зв'язку з цим постають проблеми пошуку, визначення умов ефективного розвитку математичного мислення учнів початкових класів.
Одним із засобів розвитку інтелектуальної сфери школярів є задачі. Саме розв'язуванню задач приділяється значна частина навчального часу при вивченні математики в початковій школі. При цьому необхідно визначити сутність математичного мислення як психічного процесу, встановити взаємозв'язок між навчанням учнів розв'язувати математичні задачі та розвитком мислення. Це допоможе знайти такі методи і прийоми, організаційні форми навчання (серед яких можуть бути як традиційні, так і відносно нові), за яких в найбільшій мірі проявиться розвиваюча функція задач [37, 52].
Сам процес розв'язування задач за певної методики позитивно впливає на розумовий розвиток школярів, оскільки він потребує виконання розумових операцій: аналізу і синтезу, конкретизації і абстрагування, порівняння, узагальнення. Так, під час розв'язування будь-якої задачі учень виконує аналіз: відокремлює запитання від умови, виділяє дані і шукані числа; складаючи план розв'язання, він виконує синтез, користуючись при цьому конкретизацією (в думці «малює» умову задачі), а потім абстрагуванням (абстрагуючись від конкретної ситуації, вибирає арифметичні дії); внаслідок багаторазового розв'язання задач певного виду учень узагальнює знання зв'язків між даними і шуканим, чим узагальнюється спосіб розв'язування задач цього виду.
Мислення – це соціально обумовлений, нерозривно пов'язаний з мовою психічний процес пошуків та відкриття істотно нового, процес опосередкованого та узагальненого відображення дійсності у ході її аналізу та синтезу [4, 148-149]. Мислення виникає на основі практичної діяльності з чуттєвого пізнання і далеко виходить за його межі. Процес мислення в навчальній діяльності – це процес пізнання. Він будується за відомою у психології теорією пізнання, у якій умовно можна виділити наступні етапи:
1) сприймання (на основі чуттєвих органів);
2) осмислення;
3) узагальнення;
4) практичні дії [33, 217].
На основі найпростіших методів пізнання – словесних, наочних, практичних – відбувається процес навчального пізнання. Якщо необхідно цей процес ускладнити, наприклад, процес сприймання та осмислення будується на більш складній методиці проблемного (самостійного) вивчення, то в цьому випадку розумова діяльність максимально орієнтується на заключний етап – абстрактне пізнання (узагальнення).
Мислення є узагальненим відображенням дійсності. Це процес пошуку істотних ознак, властивостей предметів та явиш і зв'язків між ними, до того ж характеристик, спільних для однорідних явищ або предметів дійсності. Вирізнені найістотніші ознаки лежать в основі узагальнення, розкривають певну закономірність або тенденцію. Так, психологи, вивчаючи особливості сприйняття людиною дійсності, відкрили таку загальну закономірність, як константність [47, 20].
Мислення має дійовий, активний і цілеспрямований характер. Виникнення в індивіда відчуттів, сприймань зумовлене зовнішніми чинниками. Ці процеси виникають при безпосередній дії подразників на органи чуття, незалежно від бажань суб'єкта. Мислення, як правило, актуалізується і спрямовується сутністю та значущістю для суб'єкта проблеми [51, 32].
Для розв'язання проблем люди використовують історичний досвід, засвоюють знання, закріплені у слові. У процесі засвоєння знань розвивається і мислення. Отже, мислення є продуктом суспільно-історичного розвитку. Водночас розвиток мислення суб'єктів зумовлює суспільний поступ, виконує роль його детермінанти.
С.Л. Рубінштейн вважає, що основним предметом психологічного дослідження мислення виступає як процес, так і діяльність. П.Я. Гальперін писав, що психологія вивчає не просто мислення і не все мислення, а тільки процес о