Дипломная работа: Модель синхронного генератора в фазных координатах
, , , - потокосцепления, связанные с соответствующими обмотками;
, , , - мгновенные токи, протекающие в свободных обмотках.
( 2 )
где и - индуктивности и взаимоиндуктивности соответствующих обмоток.
Система уравнений 1 после подставления в неё значений из уравнений 2 превращается в систему из 4 дифференциальных уравнений с переменными коэффициентами, т.к. практически все индуктивности и взаимоиндуктивности – переменные величины, т.е. являются функцией времени (вращение ротора генератора) за исключением индуктивной обмотки возбуждения.
const
Эти коэффициенты оказываются непостоянными из-за электрической и магнитной несимметрии ротора генератора. Т. о. система уравнений 1 и 2 позволяет смоделировать процессы в СГ в фазных координатах в режиме ХХ.
Чтобы смоделировать СГ в нагруженном режиме или в режиме КЗ необходимо добавить систему уравнений, позволяющую найти токи в обмотках статора и ротора.
Т. о. систему уравнений 1 дополненную системой уравнений 2 и уравнениями внешней цепи генератора будут представлять собой математическую модель СГ в фазных координатах.
Реализация модели синхронного генератора в фазных координатах
С целью упрощения модели представим её в виде 9 суперблоков. Первый суперблок моделирует переменные коэффициенты в уравнения для определения потокосцепления. Суперблоки 2,3,4,5 моделируют потокосцепление, 6,7,8 - фазное напряжение, 9-й – ток в обмотках возбуждения.
Первый суперблок в свою очередь состоит из подблоков. Первые три моделируют постоянные коэффициенты , , , ; подблоки 4 – 6 моделируют индуктивности , , ; подблоки 7 – 9 моделируют взаимоиндукцию между фазами , , ; подблоки 10 – 12 моделируют взаимоиндукцию между обмотками возбуждения и фазными обмотками статора.
Порядок выполнения работы
I. Реализация первого суперблока
1. При реализации модели СГ в первую очередь необходимо смоделировать постоянные коэффициенты , , , .
Первый подблок имеет следующую реализацию:
Рис.1 – Первый подблок первого суперблока, моделирующий
Реализация второго подблока:
Рис.2 – Второй подблок первого суперблока, моделирующий ,
Реализация третьего подблока: