Дипломная работа: Модель тракта прослушивания гидроакустических сигналов

Процесс преобразования акустической энергии в электрическую (и наоборот) выполняют подводные электроакустические приёмники и излучатели, входящие в состав антенны, и называемые гидроакустическими преобразователями (ГАП).

Конструкцию антенны определяют, в основном, её назначение и местоположение. Так, антенны судовых гидроакустических систем можно размещать на корпусе судна, буксировать или опускать за борт; антенны стационарных гидроакустических станций устанавливают на фундаментальных опорах в прибрежных районах, у входов в порты, в районах рейдовых стоянок и т.п.

Техническими параметрами гидролокационных станций (ГАС) являются: рабочая частота (от единицы до десятков килогерц), излучаемая акустическая мощность (от сотен ватт до сотен киловатт), ширина диаграммы направленности антенны в режимах излучения и приема в главных плоскостях, форма и длительность излучаемых импульсов, уровень усиления приемного тракта, ширина полосы частот приемного тракта. Техническими параметрами ГАС, которые не излучают акустическую энергию и предназначены для обнаружения и определения пеленга (курсового угла) подводного объекта по производимому им шуму, в частности движущегося судна (пассивные средства ШПС), являются: полоса рабочих частот, ширина диаграммы направленности антенны, коэффициент усиления приемного тракта.

С начала развития подводного флота тракт прослушивания являлся неотъемлемым и единственным средством обнаружения и классификации сигналов. Первоначально этот тракт состоял из одиночных приемников, которые размещались с левого и правого борта, либо где-то в носу судна. Это были одиночные приемники и все сигналы, которые поступали на вход этих приемников, оператор имел возможность прослушать. И по разности прихода сигнала с разных гидрофонов оператор определял, с какого борта идет цель. Тракт прослушивания существует столько же, сколько существует и подводное плавание, так как есть необходимость прослушивать сигналы, обнаруживать, откуда они пришли, и определять, что это за цель, противник либо безопасный объект. Несмотря на наличие в современных ГАС режима объективной классификации, значение тракта прослушивания так же велико. Гидроакустики во время поиска объекта хотят иметь возможность самостоятельно прослушивать сигнал и чаще всего именно они и оценивают параметры цели.

Таким образом, во всех ТЗ на ГАС и ГАК обязательно присутствует требование о наличии тракта прослушивания сигналов и помех с любого направления в заданном секторе обзора ГАС.

К числу основных задач, решаемых гидроакустическими средствами подводных лодок (ПЛ) при освещении окружающей обстановки, относится освещение подводной, надводной и воздушной обстановки в интересах самообороны ПЛ. Для наблюдения за морскими целями ПЛ должна обладать мощным гидроакустическим комплексом, работающим преимущественно в пассивных режимах (шумопеленгование, обнаружение гидроакустических сигналов - ОГС).

При наблюдении за ПЛ ПЛО возникает дуэльная ситуация “ПЛ против ПЛ”, выигрыш в которой определяется соотношением комплекса параметров противоборствующих ПЛ и их гидроакустических комплексов (ГАК): акустическая шумность ПЛ, уровень корабельных акустических помех работе собственного ГАК, энергетический потенциал ГАК, совершенство цифрового вычислительного комплекса ГАК, в том числе алгоритмов и программного обеспечения.

В большинстве современных ГАС и ГАК цифровая обработка информации, принятой антенной решеткой, осуществляется в частотной области. Это, как будет показано в работе, приводит к необходимости уточнения алгоритма обработки в канала прослушивания и согласования параметров этого алгоритма и базовых параметров режима шумопеленгования.

Целью дипломного проектирования является разработка тракта прослушивания для ГАС обнаружения гидроакустических сигналов по их шумоизлучению в звуковом диапазоне частот. Тракт обнаружения проектируется для работы в трех частотных диапазонах, рассчитанных под обнаружение целей на различных дальностях, при этом необходимо обеспечить наилучшие условия для прослушивания сигнала цели для каждого из трех частотных диапазонов. Поскольку, как известно, человеческое ухо наилучшим образом воспринимает частоты в полосе от ~300 Гц до 3-4 кГц, возникает задача понижать частоту прослушивания, то есть нужно выделить (вырезать) требуемую частотную полосу и перенести ее (гетеродинировать) в область частот, наиболее комфортную для оператора.

В данной работе требуется:

Разработать структуру тракта прослушивания гидроакустических сигналов на выходе сформированного пространственного канала (канала наблюдения) в тракте шумопеленгования с использованием многоэлементной антенной решетки;

разработать программный макет тракта прослушивания;

установить взаимосвязь основных параметров тракта прослушивания с базовыми параметрами тракта ШП;

с использованием программного макета выбрать параметры тракта прослушивания применительно к заданным в ТЗ на проект условиям.

В качестве многоканального датчика гидроакустичекой информации выбрана линейная эквидистантная антенная решетка, состоящая из 30 приемных элементов с межэлементным расстоянием d=0.1 метра.

Сектор обзора - ±45° относительно нормали к антенной решетке.

Частота дискретизации входных выборок fd=24000 Гц.

Частотные диапазоны прослушивания: I – (1-2.5) кГц;

II – (2-5) кГц;

III – (4-8) кГц.

Полоса пропускания усилителя тракта прослушивания (0.3-4.5) кГц.


1 Место тракта прослушивания в структуре режима ШП типовой ГАС


Обобщенная структурная схема ГАС шумопеленгования представлена на рисунке 1.


Модель тракта прослушивания гидроакустических сигналов

Рис.1 Структурная схема ГАС шумопеленгования аналогового типа


антенное устройство, содержащее несколько гидрофонов.

предварительный широкополосный усилитель.

устройство формирования характеристик направленности, технически выполняемое в виде линий задержки и сумматоров.

основные усилители и частотные фильтры

К-во Просмотров: 341
Бесплатно скачать Дипломная работа: Модель тракта прослушивания гидроакустических сигналов