Дипломная работа: Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты
Постановка задачи о распределении концентрации вредных примесей при закачке растворов в глубоко залегающие пористые пласты основана на законе сохранения массы входящих в состав примесей. Для загрязнителя, находящегося в скелете пласта, справедливо уравнение неразрывности
![]() | (1.3.1) |
где – диффузионный поток вещества в скелете,
– соответственно плотность и коэффициент диффузии радиоактивного вещества в скелете, m – пористость скелета,
– функция массообмена между скелетом и жидкостью, показывающая изменение плотности вещества в скелете за счёт диффузии молекул примеси из жидкости в скелет,
– функция источников концентрации, определяющая потери загрязнителя за счёт радиоактивного распада.
Для загрязнителя, находящегося в жидкости, уравнение неразрывности принимает вид
![]() | (1.3.2) |
где – диффузионный поток радиоактивного вещества в жидкости, текущей в пласте,
– соответственно плотность и коэффициент диффузии радиоактивного вещества в жидкости. Будем считать, что процесс перехода молекул примеси из жидкости в скелет и её переход из скелета в жидкость определяется соотношением химических потенциалов
. При этом, из закона сохранения следует, что потоки вещества из жидкости в скелет и обратно равны, но противоположны по знаку. Это приводит к появлению в правых частях уравнений одной и той же функции
, но с противоположным знаком. Полагая далее пористость m постоянной, и складывая уравнения (1.3.1) и (1.3.2), получим
![]() | (1.3.3) |
Равновесные концентрации примеси в скелете и в жидкости связаны между собой соотношением (изотерма сорбции), где
– некоторая функция концентрации примеси в жидкости.
Будем считать, что зависимость концентрации примеси в скелете от концентрации её в жидкости линейна (изотерма Генри), что является хорошим приближением при сравнительно небольших концентрациях мигранта
![]() | (1.3.4) |
где – коэффициент распределения загрязнителя между носителем и скелетом.
Тогда последнее уравнение принимает вид
![]() | (1.3.5) |
Учитывая, что для несжимаемой жидкости , а следовательно,
, из последнего уравнения получим
![]() | (1.3.6) |
Здесь введено обозначение
![]() | (1.3.7) |
– эффективный коэффициент диффузии в пласте. Из (1.3.6) следует, что в уравнении, описывающем миграцию загрязнителя, необходимо учитывать конвективный перенос загрязнителя, “осложнённый” наличием пористости в скелете и протекающими массообменными процессами между загрязнителем и скелетом. Уравнение (1.3.6) позволяет определить скорость конвективного переноса примесей в пористой среде по аналогии со скоростью конвективного переноса тепла и скоростью фильтрации
![]() | (1.3.8) |
Скорость конвективного переноса примеси определяет положение фронта загрязнения R d подобно тому, как скорость фильтрации
определяет положение фронта закачиваемой жидкости R w . При этом положение фронта закачиваемой жидкости определяется из баланса массы закачиваемой жидкости. В случае закачки с постоянной скоростью
через скважину радиуса r 0 выражение для R w имеет вид
![]() | (1.3.9) |
Соответствующие радиусы зоны загрязнения и термических возмущений определяются в пунктах 2.1 и 3.1.
1.4. Задача теплопереноса
1.4.1. Математическая постановка задачи теплопереноса и её обезразмеривание
Рассмотрим задачу о распространении радиоактивных примесей в пористом глубоко залегающем пласте, в который закачивается жидкость с растворёнными радиоактивными веществами. Такая задача является фундаментальной для подземного захоронения радиоактивных отходов и отходов химических производств.
Одним из способов прогнозирования динамики поведения радиоактивных и химических примесей в глубокозалегающих пластах, является исследование их температурных полей. Современные приборы и методики измерения температуры позволяют проводить оперативные измерения с точностью, превосходящей тысячные доли градуса. Температурные измерения в таких условиях можно использовать для контроля продвижения радиоактивной зоны.
Соответствующие температурные аномалии возникают как за счет отличия температуры закачиваемой жидкости от естественной температуры пластов, так и за счет энергии, выделяющейся при распаде радиоактивных веществ.
В результате одного акта радиоактивного распада выделяется энергия ~ 1 МэВ. Согласно действующим в России Нормам радиационной безопасности и санитарным правилам высокоактивными жидкими радиоактивными отходами (РАО) признаются отходы, активность которых > 1 Ки/л. Следовательно, для высокоактивных отходов выделяемая мощность оказывается порядка ~ ~ 5 Вт/м3 . Причём, для средне- и долгоживущих нуклидов эта мощность мало меняется на протяжении лет и даже десятилетий. Выделяемая энергия является весьма существенной и приводит к значительному изменению температурного поля.
На рис. 1.1 представлена геометрия задачи в цилиндрической системе координат, ось z которой совпадает с осью скважины. Среда представлена тремя областями с плоскими границами раздела z = ±h . Закачка примесей в область ‑h < z < h производится из скважины радиуса r 0 ; покрывающий (кровля) и подстилающий (подошва) пласты считаются непроницаемыми; средняя область толщины 2h является пористой; все пласты считаются однородными и анизотропными по теплофизическим свойствам.
Рис. 1.1. Геометрия задачи теплопереноса
Через скважину малого (по сравнению с расстоянием до точки наблюдения) радиуса в горизонтальный бесконечный пласт толщиной
закачивается вода с радиоактивным загрязнителем.
В поступающей в пласт жидкости (при ) поддерживаются постоянная температура
и концентрация примеси
. В общем случае температура и концентрация загрязнителя в пласте изменяются за счёт конвективного переноса вдоль направления
, радиальной теплопроводности и диффузии вдоль
, теплопроводности и диффузии вдоль
, за счёт наличия тепловых источников и источников концентрации (в нашем случае такими источниками является радиоактивный распад загрязнителя).
В окружающих средах имеет место теплопроводность и диффузия вдоль и радиальная теплопроводность и диффузия вдоль
. В пласте концентрация примеси
, температура –
, коэффициент диффузии вдоль
равен
, коэффициент теплопроводности –
, коэффициент радиальной диффузии –
, коэффициент радиальной теплопроводности –
, в покрывающих пласт породах соответственно –
,
,
,
,
,
, в подстилающих породах –
,
,
,
,
,
. Кроме того, постулируются условия равенства температур и концентраций, а также плотностей тепловых и диффузионных потоков на границах соприкосновения, накладываются начальные и граничные условия. В начальный момент времени везде и в бесконечно удалённых точках всегда концентрации примеси в пласте и в окружающих средах равны нулю.
Математическая постановка задачи теплопереноса для всех областей, таким образом, включает уравнение теплопроводности с учётом радиоактивного распада в покрывающем
![]() | (1.4.1) |
и подстилающем
![]() | (1.4.2) |
пластах, а также уравнение конвективного переноса с учётом радиоактивного распада в пористом пласте
![]() | (1.4.3) |
Сомножитель при во втором слагаемом ?