Дипломная работа: Моделирование тепловых процессов при наплавке порошковой проволокой

Таким образом, наше влияние на конечный результат, определяемый выражением для , весьма ограничено. Поэтому рассмотрим составляющие уравнения для с точки зрения управляемости процессом плавления сердечника. Неравномерность плавления оболочки и сердечника порошковой проволоки непосредственно зависит от распределения сварочного тока между оболочкой и сердечником. Электросопротивление сердечника в 3000 раз больше, чем электросопротивление металла оболочки [12], поэтому проводимость шихты сердечника составляет обычно 3,5-4% от проводимости оболочки порошковой проволоки. Следовательно, сварочный ток протекает практически по оболочке порошковой проволоки, а плотность тока в порошковой проволоке можно рассчитывать по сечению оболочки.

Площадь оболочки S в поперечном сечении составляет обычно 2 - 5 мм2 . Расчет показывает, что и процессе сварки оболочка порошковых проволок на вылете может нагреваться до температур примерно 1000 °С

В некоторых случаях отставания плавления сердечника от оболочки порошковой проволоки планируют специально, например, когда необходимо поступление легирующих составляющих в наплавленный металл в нерасплавленном состоянии. Для этого с целью ухудшения теплопередачи между сердечником и оболочкой проволоки помещают теплоизолирующую прослойку толщиной 0,1-0,2 мм с низкой теплопроводностью.

В основу расчета теплового баланса нагрева вылета порошковой проволоки положена расчетная схема Н.Н. Рыкалина [13], в которой учтены некоторые особенности теплового состояния, характерные для порошковой проволоки:

Электрическое сопротивление шихты сердечника намного больше сопротивления оболочки порошковой проволоки.

Сварочный ток проходит в основном через оболочки проволоки, поэтому плотность тока в порошковой проволоке можно считать по сечению оболочки.

При прохождении сварочного тока по порошковой проволоке все тепло выделяется в ее оболочке.

Выделившееся тепло идет на нагрев оболочки проволоки, сердечника и частично теряется через боковую поверхность порошковой проволоки путем теплоотдачи в окружающую среду.

Поскольку нас интересует нагрев порошковой проволоки сварочным током на вылете, а составляющие теплового баланса Qu , Qk , Qэ оказывают влияние на нагрев сердечника только на заключительной стадии плавления порошковой проволоки (на участке вылета длиной 3-5 мм в области дуги), где температура сердечника приближается к температуре плавления компонентов шихты, то при расчете уравнения теплового баланса мы их учитывать не будем.

Итак, выделим элементарный участок порошковой проволоки длиной , находящийся на расстоянии от токоподвода. Тогда тепловой баланс нагрева участка порошковой проволоки сварочным током с учетом принятых допущений выразится уравнением:

, (1.3)

где - джоулево тепло, выделившееся в оболочке на данном участке вылета;

- приращение теплосодержания оболочки проволоки;

- приращение теплосодержания сердечника порошковой проволоки;

- приращение теплосодержания изолирующей прослойки;

- теплоотдача с боковой поверхности данного участка вылета в окружающую среду.

Слагаемые правой части уравнения (1.3) различаются по величине. Максимальной величиной обладает член , поскольку источник теплоты находится именно в оболочке. Величины и пропорциональны коэффициентам теплопередачи соответственно в сердечник и в окружающую среду.

При прохождении тока в элементе оболочки вылета за время выделится теплота:

, (1.4)


где I - ток наплавки, А;

- удельное сопротивление материала оболочки, Ом*м;

S0 - площадь поперечного сечения оболочки порошковой проволоки, м2 .

Накопление теплоты в элементе оболочки проволоки при увеличении температуры на в единицу времени за время составит:

, (1.5)

где - удельная теплоемкость материала оболочки порошковой проволоки, Дж/кг*град; - плотность материала оболочки порошковой проволоки, кг/м3 ; Тоб - температура оболочки, °С.

Накопление теплоты в элементе сердечника вылета порошковой проволоки при увеличении температуры шихты на в единицу времени за время составит:

, (1.6)

где - удельная теплоемкость материала сердечника порошковой проволоки, Дж/кг*град; - плотность материала сердечника порошковой проволоки, кг/м3 ; - площадь поперечного сечения сердечника порошковой проволоки, м2 ; - средняя объемная температура сердечника порошковой проволоки, °С. Величину можно найти из соотношения

. (1.7)


К-во Просмотров: 363
Бесплатно скачать Дипломная работа: Моделирование тепловых процессов при наплавке порошковой проволокой