Дипломная работа: Обработка и визуализация объектов на космических изображениях средствами пакета Contour
В остальном реальный спектр Солнца мало отличается от рис.1.2.
Рис 1.2. Распределение энергии в спектре Солнца согласно закону Планка
На длинах волн более 4 мкм собственное тепловое излучение Земли превосходит излучение Солнца. Регистрируя интенсивность теплового излучения Земли из космоса, можно достаточно точно оценивать температуру суши и водной поверхности, которая является важнейшей экологической характеристикой [2].
При регистрации теплового излучения со спутников используется интервал длин волн 10-14 мкм, в котором поглощение в атмосфере невелико. При температуре земной поверхности (облаков), равной минус 50° С, максимум излучения согласно (1.1) приходится на 12 мкм, при 50° С - на 9 мкм.
Если с помощью датчика, установленного на спутнике, измерено значение плотности потока мощности B=B (λ, Т) от некоторого объекта, то из (1.1) получаем: T= λ/c2 ln (c1 /λ5 B+ 1). Определенная по интенсивности В теплового излучения (радиации) температура Т носит название радиационной , в отличие от термодинамической температуры, характеризующей интенсивность теплового движения молекул вещества и измеряемой контактным термометром [3].
1.2 Сегментация изображений
Одним из самых распространенных методов выделения объектов на космических изображениях Земли является сегментация. Этот метод носит черты и детерминированного, и статистического подходов. Под сегментацией, в широком смысле, понимают преобразование полутоновых или цветных изображений в изображения, имеющие меньшее число тонов или цветов, чем исходные. В узком смысле сегментацией называют преобразование полутонового изображения в двухуровневое (бинарное), содержащее всего два уровня яркости - минимальный (обычно это 0) и максимальный (обычно 255). При этом объект и фон разделены, легко определить число объектов, характеристики их местоположения (координаты, поворот выделенной оси объекта относительно координатных осей и т.п.), геометрические характеристики (например площадь каждого объекта, периметр, средний, минимальный, максимальный размеры) и, наконец, идентифицировать объект - указать, что это такое [4].
Целью сегментации является выделение областей, однородных в каком-то определенном заданном смысле (сегментов). Однородность является признаком принадлежности области к определенному классу.
Очень часто сегментация используется для выделения областей приблизительно одинакового тона и/или цвета. Вместе с тем сегментация часто используется для выделения областей, однородных в смысле некоторого более сложного свойства (например типа текстуры). Такие области принято называть кластерами [5].
Текстурой в теории обработки изображений называют структуру, которая характеризуется наличием повторяющегося "рисунка", состоящего из некоторых однородных участков приблизительно одинаковых размеров. Примером текстурного изображения являются фотоснимок кирпичной стены, аэрофотоснимок городских кварталов, космическое изображение участка летней тундры с многочисленными круглыми озерами.
Применяются три основных способа сегментации изображений: пороговая, путем наращивания областей, путем выделения границ.
Пороговая сегментация состоит в простом объединении близких по характеристикам областей изображения в небольшое число сегментов. Пороговая сегментация может осуществляться на основе априорно заданных порогов. Если яркость превышает порог, то элемент изображения относят к одному сегменту, если она ниже порога - то к другому. Это самый простой способ и требует минимальных вычислительных затрат [6].
Другой, более адекватный, способ выбора порогов заключается в том, что пороги выбираются как границы мод гистограммы изображения. Рассмотрим более подробно этот способ выбора на примере бинаризации полутонового изображения, у которого гистограмма содержит две моды.
Если моды гистограмм не перекрываются или перекрываются слабо, то выбор порога разбиения изображения на две области U 1 и U 2 не представляют труда. Этот случай типичен для задачи выделения площадей, покрытых снегом и льдом на фоне леса и оттаявшей земли по результатам дистанционных исследований. Гистограмма такого изображения имеет две моды - одна отвечает более темному фону, вторая - объектам с большей яркостью, т.е. снегу/льду, между модами существует резкая и протяженная зона минимума. Порог можно выбрать посередине зоны (рис.1.4).
В способе сегментация путем наращивания областей выделяются однородные области. Рассмотрим вначале сегментацию путем наращивания областей с использованием критерия однородности по значению яркости (вектора яркости). Схема алгоритма этого метода предусматривает выбор стартового пикселя и рассмотрение смежных с ним пикселей для проверки близости их значений, например, по евклидову расстоянию. Если значения яркости текущего и какого-либо смежного пикселей оказываются близкими, то эти пиксели зачисляются в одну область. Таким образом, область формируется в результате сращивания отдельных пикселей. На определенном этапе (зависящем от модификации алгоритма) область проверяется на однородность и, если результат проверки оказывается отрицательным, то область разбивается на более мелкие участки. Процесс продолжается до тех пор, пока все выделенные области не выдержат проверки на однородность [7].
Общая схема проверки области на однородность состоит в следующем. Пусть F (R ) - заданная мера однородности области R . Если R 12 = R 1 ∩R 2 , то критерий однородности можно задать, потребовав, чтобы выполнялось условие F (R 12 ) ≤ ε, ε - заданный порог.
Таким образом, при сегментации путем наращивания областей учитывается структура области, её связность. Это бывает важно при обработке данных дистанционного зондирования, нередко этот метод дает лучшие результаты, чем другие методы, не учитывающие связность и рассчитанные на индивидуальное отнесение каждого пикселя к тому или иному классу.
Дальнейшая классификация алгоритмов основана на способе наращивания области. При использовании квадратной или прямоугольной сетки используются 2 вида связности: 4 - и 8-связность [8].
Сегментация путем выделения границ предусматривает использование оператора градиента. После этого для установления факта, что действительно обнаружена граница, применяется процедура разделения по порогу. Затем пиксели, идентифицированные как граничные, соединяются в замкнутые кривые, окружающие соответствующие области.
В этом методе, как и в других методах сегментации, существенным является критерий однородности области, по характеристике которой и вычисляются значения градиента. Прямые методы сегментации путем выделения границ предусматривают применение к исходному изображению.
Задача построения границ сегментов на изображении градиента выступает в качестве самостоятельной задачи. Вообще говоря, эта задача довольно сложная и может быть решена лишь в самых простейших случаях. Например, можно выделять локальные максимумы градиента всех строк и столбцов изображения [9].
Сегментация путем выделения границ показала, что метод достаточно хорошо работает только при большой протяженности границы [10].
1.3 Основы теории цвета
Глаз . Если опустить несущественные для восприятия цвета оптические детали, глаз подобен цифровому фотоаппарату с очень неравномерным распределением пикселей по площади кадра.
"Пикселями" на сетчатке глаза служат светочувствительные клетки двух разновидностей: палочки и колбочки. Причем, палочки действуют в основном при слабом освещении и предоставляют информацию лишь о яркости, а колбочки, эффективно действующие только при достаточно ярком свете, позволяют глазу различать цвета.
Колбочки трех типов, называемые обычно S-, M-, и L-колбочками, воспринимают свет соответственно в коротко-, средне-, и длинноволновой областях спектра. Часто их называют также синими, зелеными и красными колбочками, что не совсем корректно, но зато, наглядно.
Примерно следующим образом распределяется чувствительность клеток сетчатки (рис.1.3):
Рис.1.3 Распределение чувствительности клеток сетчатки
Заметим, что это нормализованная чувствительность. В абсолютных значениях чувствительность палочек примерно вдвое превосходит максимальную чувствительность колбочек, а сами колбочки активно подстраиваются под освещение и почти никогда не обладают одинаковыми максимумами чувствительности [11].