Дипломная работа: Обработка и визуализация объектов на космических изображениях средствами пакета Contour
Основная информация о деталях изображения и о цветах доставляется нам колбочками, расположенными в желтом пятне и ямке. Периферийное зрение имеет достаточно невысокое разрешение и не позволяет толком различать цвета. В то же время, увеличение концентрации палочек делает периферийное зрение более действенным в темноте. Ночью, зачастую, проще рассмотреть темный объект, отведя взгляд чуть в сторону.
программа contour delphi зондирование
Также различием палочек и колбочек определяется ночной сдвиг пика чувствительности, называемый эффектом Пуркинье. При ярком свете глаз наиболее чувствителен к длинам волн около 554 нм, но в темноте, когда зрение практически полностью определяется палочками, пик чувствительности сдвигается к 511 нм. Таким образом, ночью все кошки действительно становятся серыми, и если вы умудритесь найти кошек синего и красного цветов, то синяя, посерев, станет гораздо светлее красной.
Подбор цветов в трехцветность . До сих пор мы говорили о цвете как о спектральной характеристике света, т.е. о его физическом смысле. Рассмотрим теперь более житейское понимание цвета. Зеленый цвет дает зеленая лампочка, красный - красная. Если на белый лист бумаги посветить обеими лампочками - он станет желтым. Что это означает? Означает это, что одни цвета можно получить смешением других. Очевидный, казалось бы, вывод становится совсем неочевидным при распространении его на все возможные цвета. Один из основных опытов, служащих изучению цвета - подбор цветовых пар. Представьте нейтральный экран в темной комнате: левая его половина освещается лампой некоторого заданного цвета (тестовый цвет), а правая - одновременно несколькими лампами разных цветов, называемых основными. Теперь будем изменять яркость отдельных ламп основных цветов, пытаясь сделать их общий цвет неотличимым от тестового. Закончив подбор, запишем тестовый цвет как сумму основных с соответствующими яркостям ламп весовыми коэффициентами. Эксперимент показывает, что подобрать цвета таким образом возможно практически во всех случаях, но основных цветов может понадобиться очень и очень много.
Второй важный момент, который выясняется в таких экспериментах: сложение цветов происходит линейно. При использовании n основных цветов, любой тестовый цвет мы можем представить как вектор в n -мерном пространстве их яркостей и при необходимости комбинирования нескольких "левых" цветов, для которых подобраны координаты, рассматривать их смешение как сложение соответствующих векторов со всеми вытекающими из этого правилами.
Заметьте: цвет мы подбираем исключительно по ощущениям, не пользуясь никакими измерительными приборами кроме собственных глаз. Более того: воспользуйся мы такими приборами - выяснили бы, скорее всего, что спектральные характеристики излучения одинаковых для глаза половинок экрана здорово отличаются.
Существенным дополнением к эксперименту подбора будет введение возможности разностного сопоставления цветов. Разрешим перенаправлять часть ламп с правой части экрана на левую, а коэффициенты их яркостей в этом случае будем считать отрицательными. При таком допущении оказывается, что большинству наблюдателей достаточно лишь трех линейно-независимых основных цветов для подбора коэффициентов к любому тестовому цвету.
Этот факт легко объясним, если вспомнить о физическом смысле цвета и том, как он воспринимается. Цвет как спектральная характеристика представляет собой вектор в бесконечномерном пространстве, каждой координате которого соответствует идеальный монохромный источник света. Воспринимая излучение, наш мозг оперирует величинами возбуждения трех рецепторов. Таким образом, процесс восприятия глазом цветов представляет собой проецирование бесконечномерного вектора на трехмерное пространство.
Теперь понятно, почему подобранные "на глаз" цвета могли сильно различаться по спектральным характеристикам. Понятно также, что, оперируя векторами в трехмерном пространстве воспринимаемых цветов (его часто называют цветовым пространством LMS по названиям типов колбочек), мы можем без зазрения совести выбирать любые другие тройки базисных векторов, которые нам покажутся удобными [12].
Цветовые пространства . Для чего мы вообще возимся с цветами? Цвета нам нужно воспроизводить - на бумаге, мониторе или где-нибудь еще, цвета нужно сравнивать и корректировать. Для всего этого цвета нужно уметь строго описывать, т.е. задавать и определять координаты того или иного цвета в некотором пространстве признаков.
Способов задавать координаты цветов придумано в избытке - попробуем разобраться, что из чего вытекает. Очевидным решением было бы использование в качестве координат коэффициентов основных цветов в эксперименте подбора цвета. Если для каждой длины волны λ подобрать коэффициенты основных цветов A, B и C, мы получим некоторые зависимости a (λ), b (λ), c (λ), которые называются функциями подбора цвета. Любой чистый (монохромный) цвет теперь можно будет найти как Цвет (λ) = a (λ) + b (λ) + c (λ).
Если в качестве основных цветов выбрать красный, зеленый и синий с длинами волн 645.16 нм, 526.32 нм и 444.44 нм соответственно, функции подбора цвета для среднего наблюдателя примут следующий вид (рис 1.4):
Рис.1.4 Функции подбора цвета
Отрицательные значения функций указывают на необходимость разностного сопоставления цветов. Для описания независимого цвета это не слишком удобно. Еще хуже, что избавиться от отрицательных значений нам не удастся ни при какой реальной тройке основных цветов. Чтобы избавиться от отрицательных коэффициентов в выражениях для цветовых пар, можно немного переопределить спектры основных цветов, что, правда, сделает их нереальными по отдельности [13].
CIE (Commission internationale de l’eclairage, или МКО - Международная комиссия по освещению) предлагает использовать в качестве основных условные цвета X, Y Z. Вам не удастся найти их в природе - спектральная плотность этих цветов на некоторых длинах волн отрицательна. Хотя, сами X, Y и Z не являются реальными цветами, подобраны они так, что любой реальный цвет представим в виде их линейной комбинации с неотрицательными коэффициентами. Так выглядят функции подбора для XYZ (рис.1.5):
Рис.1.5 Функции подбора цвета для XYZ
Теперь любой реальный цвет мы можем представить вектором в пространстве XYZ (CIE XYZ), но далеко не любой вектор в этом пространстве представляет реальный цвет. В прямоугольной системе координат XYZ область видимых человеческим глазом цветов представляет собой конус со сложным основанием (рис.1.6):
Рис.1.6. Видимая область цвета человеческим глазом
Крайне удобным производным от XYZ пространством является CIE xy, получаемое сечением XYZ плоскостью X+Y+Z=1 . На плоскости вводится система координат с началом в точке пересечения плоскости с осью Z и координатами x и y , равными единицам в точках пересечения плоскости с осями X и Y соответственно. В результате получается следующее (рис.1.7):
Рис.1.7 Плоскость сечения
Рассмотрим рисунок подробнее. Цвета в пределах плоскости xy отличаются по цветовому тону и насыщенности, в то время как яркость (расстояние до нуля XYZ) остается за пределами описания. Иногда для полного описания цвета используют пространство xyY , рассматривая в качестве яркости значение Y .
Яркость .
Строго говоря, яркость - это физическая характеристика источника света, описывающая его излучение в данном направлении. В контексте цветов корректнее было бы говорить о светлоте, как субъективном отличии яркости данного цвета от яркости эталонного белого. Используются, однако, оба термина: можно считать, что светлота характеризует отличие цвета от белого, а яркость - его отличие от черного. В переводной литературе в качестве синонима яркости иногда используется термин "значение" (value).
Численно яркость может определяться по-разному. В пространстве XYZ или аналогичном ему под яркостью может пониматься евклидово расстояние до начала координат, сумма всех трех координат или двух из них. Иногда используется наибольшее значение из трех координат цвета или среднее арифметическое двух наибольших. В этой статье мы не будем углубляться в дебри тонких различий, не критичных для общего понимания теории цвета. Какой бы термин вы ни использовали для яркости/светлоты и как бы ни определяли величину, суть остается неизменной. Абстрагировавшись от цветового тона и насыщенности, мы получим отрезок, на одном конце которого будет белый цвет, а на другом - черный.
Вернемся к плоскости xy . На плавной дуге, ограничивающей область видимых цветов, отмечены длины волн. На ней же располагаются соответствующие этим длинам волн чистые спектральные цвета. Соединяющий фиолетовый с красным отрезок служит прибежищем пурпурных цветов - там же располагается и маджента. Пурпурный - неспектральный цвет, у него нет своей длины волны или диапазона длин волн. Ощущения пурпурных тонов возникают в результате приема глазом смеси красных и фиолетовых цветов [14].