Дипломная работа: Обслуживание и ремонт электрических двигателей (ремонт синхронного двигателя)
Рис. 5. Униполярная электрическая машина
В последние годы получили распространение также бесколлекторные машины постоянного тока с вентильным управлением, в которых механический преобразователь частоты заменен преобразователем частоты на полупроводниковых элементах.
Несмотря на большое число различных типов электрических машин и независимо от их конструктивного исполнения, рода и числа фаз питающего тока и способов создания магнитных полей преобразование энергии в машинах происходит только при следующем условии: во всех электрических машинах в установившихся режимах поля статора и ротора неподвижны относительно друг друга. Поле ротора, которое создается токами, протекающими в обмотке ротора, вращается относительно ротора. При этом механическая частота вращения ротора и частота вращения поля относительно ротора в сумме равны частоте вращения поля статора, поэтому частоты токов в статоре и роторе жестко связаны соотношением f 2 = f 1 s, (1)
где f 1, f 2 - частоты тока и напряжения статора и ротора; s - относительная частота вращения ротора или скольжение, определяемое частотой вращения поля статора n 1 и частотой вращения ротора машины n 2 :
s = (nl ± n 2 ) / n 1 (2)
В синхронных машинах обмотка возбуждения ротора питается постоянным током (f 2 = 0), и, следовательно, из (1) s = 0, откуда по (2) n= n 1 т. е. ротор синхронной машины вращается синхронно с полем, созданным токами обмотки статора.
Жесткая связь частоты тока и частоты вращения определила область применения синхронных машин. Синхронные генераторы являются практически единственными мощными генераторами электрической энергии на электростанциях. Синхронные двигатели с учетом трудностей их пуска применяются как приводы промышленных установок, длительно работающих при постоянной частоте вращения и не требующих частых пусков, например как приводные двигатели воздуходувок, компрессоров и т. п. [7, с. 9]
В асинхронных машинах ток в обмотке ротора обусловлен ЭДС, наведенной в проводниках обмотки магнитным полем статора.
Наведение ЭДС происходит только при пересечении проводниками магнитных силовых линий поля, что возможно лишь при неравенстве частот вращения ротора и поля статора (n 2 ≠ n 1 ). Частота тока в роторе равна f 2 = f 1 s, что обеспечивает взаимную неподвижность поля токов ротора и поля статора, а частота вращения ротора при этом равна n 2 = n 1 (1 - s). При скольжении s = l ротор неподвижен (f 2 = f 1 ), преобразования механической энергии не происходит и имеет место трансформаторный режим работы машины.
При питании обмотки ротора постоянным током машина переходит в синхронный режим работы. При питании ротора переменным током асинхронный двигатель может вращаться с частотой большей, чем частота поля статора. Такие режимы используются редко из-за сложности пуска машины: необходим разгонный двигатель либо преобразователь частоты. Примером двигателя этого типа являются двигатели Шраге - Рихтера, в которых для преобразования частоты тока ротора используется коллектор, соединенный с добавочной обмоткой ротора. Регулирование частоты вращения двигателя производится изменением добавочной ЭДС, вводимой в обмотку ротора, путем изменения положения щеток на коллекторе .
В машинах постоянного тока поле возбуждения создается постоянным током, а поле якоря - переменным. Преобразование постоянного тока сети в многофазный переменный ток якоря происходит с помощью механического преобразователя - коллектора. Частота переменного тока якоря определяется частотой его вращения, и магнитное поле, создаваемое током якоря, неподвижно относительно поля возбуждения машины. [7, с. 9]
Бесколлекторные (вентильные) машины постоянного тока, как правило, обращенные, т. е. их обмотки возбуждения, питаемые постоянным током, расположены на вращающемся роторе, а якорные обмотки - на неподвижном статоре. Частота питания якорных обмоток задается статическим преобразователем частоты. Условие взаимной неподвижности полей статора и ротора приводит к возможности регулирования частоты вращения вала двигателя изменением частоты питания его якорных обмоток. С этой точки зрения вентильные машины постоянного тока могут рассматриваться как синхронные, обмотки переменного тока которых питаются от преобразователя частоты.
В однофазных коллекторных машинах обмотки возбуждения питаются переменным током и создают пульсирующее поле. Коллектор преобразует однофазный ток питания в многофазный переменный ток с частотой, зависящей от частоты вращения ротора, при которой магнитные поля статора и ротора неподвижны относительно друг друга. Из-за затрудненной коммутации коллекторные машины переменного тока выполняются лишь небольшой мощности
Глава 2. ОБЩАЯ ХАРАКТЕРИСТИКА СИНХРОННОГО ЭЛЕКТРИЧЕСКОГО ДВИГАТЕЛЯ И ЕГО НАЗНАЧЕНИЕ
Синхронные машины, как и другие электрические машины, обратимы, т.е. они могут работать как в двигательном, так и генераторном режимах. Однако электропромышленность выпускает синхронные машины, предназначенные для работы только в генераторном или только в двигательном режиме, так как особенности работы машины в том или ином режиме предъявляют различные требования к конструкции машины. [6, с. 431]
Синхронные двигатели чаще работают в пусковых режимах и должны развивать больший пусковой момент, чем генераторы. Это накладывает определенные условия на конструкцию ротора: демпферную (пусковую) обмотку синхронных двигателей рассчитывают на большие токи и более длительный режим.
Для возбуждения синхронных двигателей используется электромашинная система возбуждения или тиристорная система возбуждения. В электромашинных системах возбуждения якорь возбудителя - генератора постоянного тока - соединяется с валом синхронного двигателя жестко или в тихоходных машинах - через клиноременную передачу, которая обеспечивает увеличение частоты вращения возбудителя и снижение его массы. Системы возбуждения синхронных двигателей принципиально не отличаются от систем возбуждения генераторов.
Уравнения синхронного двигателя отличаются от уравнений синхронного генератора лишь тем, что в них изменяется знак момента сопротивления.
Чтобы из генераторного режима перейти в двигательный, надо изменить знак момента сопротивления, приложенного к валу синхронной машины. Тогда изменится знак угла θ и направление активной мощности; машина начнет потреблять мощность из сети.
На угловой характеристике (рис. 6) область двигательного режима находится в зоне отрицательных углов θ. Устойчивой частью угловой характеристики в двигательном режиме является область от 0 до - 90°. Номинальный момент, соответствующий θ ном, находится в области 20-30°. Двигатель с неявнополюсным ротором имеет максимум момента при θ = - 90°:
(3)
Максимальный момент зависит от размера воздушного зазора двигателя. Чем больше зазор, тем меньше xd и больше М эм мах . Однако при большом зазоре растут габариты машины. Предел статической устойчивости
(4)
Рис. 6 Угловая характеристика синхронной машины
Удельный синхронизирующий момент, как и в генераторном режиме, максимален при θ = 0 и равен нулю при θ = 90° .
Для явнополюсного двигателя зависимость Мс , Мэм = f (0) имеет такой же вид, как и для генератора, но располагается в зоне отрицательных углов θ. [6, с. 432]
U-образные характеристики синхронных двигателей имеют тот же вид, что и для генераторов. При перевозбуждении синхронный двигатель по отношению к сети является емкостью, недовозбужденный двигатель потребляет из сети реактивную мощность, являясь по отношению к сети индуктивностью. При недовозбуждении реакция якоря в синхронном двигателе - подмагничивающая, при перевозбуждении - размагничивающая. Важное значение для исследования процессов преобразования энергии в синхронных двигателях имеют рабочие характеристики (рис. 7).
Рис. 7. Рабочие характеристики синхронного двигателя
С ростом нагрузки на валу двигателя увеличивается момент и ток в якоре, сначала по линейному закону, а затем из-за изменения параметров - по нелинейному закону. Если не изменяется If , cos φ может падать, расти или иметь максимум. Это зависит от значения If и может быть прослежено по U-образным характеристикам: при увеличении Р2 - переходе с одной U-образной характеристики на другую cos φ изменяется, так как из-за внутреннего падения напряжения кривая cos φ = 1 смещается в область больших нагрузок. При изменении If можно получить постоянное значение cos φ при разных Р2 (рис. 8). Кривая 1 на рис. 8 соответствует работе синхронного двигателя с постоянным током возбуждения в зоне недовозбуждения на U-образных характеристиках, кривая 2 – работе синхронного двигателя с перевозбуждением; кривая 3 возможна при регулировании тока возбуждения.
Рис. 8. Зависимости cos φ синхронного двигателя от нагрузки
Зависимость КПД от нагрузки такая же, как и для всех электрических машин.