Дипломная работа: Организация и содержание элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля

Как уже ранее говорилось, в научно методической литературе выделяют три типа элективных курсов: предметные, межпредметные и не входящие в базисный учебный план.

Наша задача составить содержание элективного курса, не входящего в базисный учебный план. Для того, чтобы определить содержание элективного курса по теме «Вероятностно-статистические методы в спорте», необходимо выяснить, как и где теория вероятностей и статистика применятся в спорте.

1) Графическое представление результатов измерений. Применяется для повышения наглядности эмпирических распределений.

2) Расчет основных статистических характеристик. Графическое представление результатов дает только наглядное представление о том, как варьирует признак в выборочной совокупности. Числовые характеристики дают количественное представление об эмпирических данных и позволяют сравнивать их между собой.

3) Проверка статистических гипотез. Применяется для проверки каких-либо теоретических предположений, связанные с эффективностью мероприятий, направленных на совершение какого-либо процесса. Исследователь выдвигает предположение исходя из анализа конкретного явления, затем справедливость предположений проверяется на основании данных соответствующего эксперимента, условии которого контролируются.

4) Корреляционный и регрессионный анализ. Применяется с целью установления наличия и степени связи, например, между спортивным результатом и определенным показателем тренированности, между силой мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее.

Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля.

1. Комбинаторика . Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с повторениями, выбор без учета порядка. Правило суммы, правило произведения.

2. Вероятность . Основные понятия теории вероятностей. Операции над событиями. Классический, статистический подход к определению вероятности. Основные правила вычисления вероятностей. Формулы полной вероятности, Бейеса.

3. Случайные величины . Понятие дискретной и непрерывной случайной величины. Закон распределения вероятностей дискретной случайной величины. Вычисление математического ожидания и дисперсии.

4. Математическая статистика . Общие сведения. Вариационные ряды и их графические представления. Дискретные и непрерывные ряды. Проверка статистических гипотез. Основы корреляционно-регрессионного анализа.

В результате изучения данного элективного курса учащиеся должны овладеть следующими умениями:

· рационально решать комбинаторные задачи, применяя формулы;

· рационально решать задачи, применяя формулы комбинаторики и основные правила вычисления вероятностей;

· вычислять математическое ожидание и дисперсию дискретной случайной величины;

· изображать вариационные ряды;

· находить эмпирические линии регрессии и уравнение линии регрессии. Также применять на практике полученные знания и умения.

2.2. Основные принципы построения методики изучения элективного курса

Так как изучение теории вероятностей и статистики в школьный курс было введено недавно, то в настоящее время существуют проблемы с реализацией этого материала в школьных учебниках. Также, в связи со специфичностью элективного курса, количество методической литературы тоже невелико.

Практически во всей литературе считается, что главным при изучении данной темы должен стать практический опыт учащихся, поэтому обучение желательно начинать с вопросов, в которых требуется найти решение поставленной проблемы на фоне реальной ситуации. В процессе обучения не следует доказывать все теоремы, так как на это тратиться большое количество времени, кроме того, наша задача сформировать профессионально значимы навыки, а умение доказывать теоремы к таким навыкам не относится.

Изучение должно начинаться с изучения основ комбинаторики, причем параллельно должна изучаться теория вероятностей, так как комбинаторика используется при подсчете вероятностей. Начинать обучения комбинаторике целесообразно с решения простых комбинаторных задач методом перебора. Операция перебора раскрывает идею комбинирования, служит основой для формирования комбинаторных понятий. Основными комбинаторными понятиями являются: сочетания, перестановки, размещения. На первом этапе сами термины можно не вводить, главное чтобы учащийся осознавал наборы какого типа нужно составить в данной задаче.

После того как учащиеся научаться составлять наборы из элементов заданного множества по заданному свойству, появляется следующая задача – подсчет количества возможных наборов. Такие задачи решаются с помощью применения принципа умножения. Хорошей наглядной иллюстрацией правила умножения является дерево возможных вариантов. Данная тема хорошо изложена в учебниках [4] и [27].

Далее предлагается перейти к теории вероятностей. Одной из главных задач является формирование понятия случайного события. Сформировать данное понятие удобно на различных примерах из жизни. Также необходимо сформировать у учащихся представления об основных понятиях теории вероятностей, а именно: достоверные события, невозможные, равновероятные. Все эти понятия нужно вводить, опираясь на понятные примеры из жизни.

Необходимо развить у учащихся понимание степени случайности различных явлений и событий. Для этого можно использовать эмпирические методы, для того чтобы извлечь очевидные закономерности. Следующим шагом в продолжение вероятностной линии идет введение классического и статистического определения вероятности. Необходимо чтобы учащиеся понимали разницу между этими двумя подходами. Чтобы осознавали, что одно это определение вероятности, а другое – способ вычисления вероятности. Таким образом, можно сделать вывод, что определение классической вероятности не требует, чтобы испытания производились в действительности, определение же статистической вероятности предполагает, что испытания были произведены.

После введения классического определения вероятности в учебниках обычно вводиться геометрическая вероятность, но в нашем случае ее можно не рассматривать, так как она не используется для решения задач в области спорта.

На следующем этапе изучаем формулу полной вероятности и формулу Бейеса. Важно рассмотреть применения данных формул на различных примерах, для того чтобы сформировать у учащихся умения применять данные формулы к решению задач.

Также изучается понятие дискретной случайной величины и непрерывной случайной величины. Правила вычисления основных характеристик этих величин. Важно показать практический смысл этих характеристик. Так как вычисления математического ожидания и дисперсии не вызывает никакой сложности, то затрачивать большое количество времени на эту тему не стоит.

На последнем этапе переходим к изучению статистики, используя ранее полученные знания. На этом этапе появляется много новых терминов, здесь учителю можно посоветовать следующее: попросить учащихся завести словари, куда бы они заносили новые понятия и по мере надобности могли бы туда заглядывать, также можно предложить сделать таблицу, аналогичную таблице приведенной в учебнике [17].

Статистические исследования являются завершающим этапом изучения элективного курса. Здесь рассматриваются примеры статистических исследований в области спорта, полученные ранее. Изучаются основные методы оценки статистических гипотез, регрессионный анализ. Также учащимся может быть предложено самостоятельно провести несложное статистическое исследование.

2.3. Методика использования практико-ориентированных задач

Для успешного освоения учащимися материала необходимо показать, что получаемые на занятиях по математике знания и умения, им понадобятся в их практической деятельности.

К-во Просмотров: 214
Бесплатно скачать Дипломная работа: Организация и содержание элективного курса "Основы теории вероятностей и математической статистики" в классах оборонно-спортивного профиля