Дипломная работа: Организация процесса повторения в курсе геометрии 7-9 классов

3. Тематическое повторение (обобщающее и систематизирующее повторение законченных тем и разделов программы).

4. Заключительное повторение (организуемое при окончании прохождения большого раздела программы или в конце учебного года). [2]

Охарактеризуем более подробно каждый и выделенных видов.

2.1. Повторение пройденного в начале года

При повторении в начале учебного года на первый план должно выдвигаться повторение тем, имеющих прямую связь с новым учебным материалом. Новые знания, приобретаемые на уроке, должны опираться на прочный фундамент уже усвоенных.

При повторении в начале года необходимо наряду с повторением тем, тесно связанных с новым материалом, повторить и другие разделы, которые пока не примыкают к вновь изучаемому материалу. Здесь необходимо сочетать обе задачи: провести общее повторение в порядке обзора основных вопросов из материала прошлых лет и более глубоко повторить вопросы, непосредственно связанные с очередным материалом по программе нового учебного года.

Само повторение следует проводить как в классе, так и дома. При решении вопроса, какой материал должен быть повторен в классе и какой оставлен учащимся для самостоятельного повторения дома, надо исходить из особенностей материала. Наиболее трудный материал повторять в классе, а менее трудный давать на дом для самостоятельной работы.

Например, в IX классе на уроках вводного повторения следует повторить понятия вектора, суммы и разности векторов, произведения вектора на число, их свойства. Полезно также повторить некоторые свойства треугольников и четырехугольников: теорему Пифагора, свойство средней линии треугольника, формулы вычисления площади треугольника, понятия медианы, биссектрисы и высоты треугольника, понятия параллелограмма и трапеции, свойства и признаки параллелограмма, ромба, прямоугольника. Цель этого повторения напомнить учащимся сведения, необходимые для изучения геометрии в IX классе.

Повторение можно организовать в ходе решения следующих задач:

1. В треугольниках ABC и A l B l C l дано: АВ = А 1 В 1 AC = A1 C 1 , точки D и D l лежат соответственно на сторонах ВС и В 1 С 1 , AD = A 1 D l . Докажите, что данные треугольники равны, если AD и A 1 D 1 . а) высоты; б) медианы.

2. Докажите, что центр окружности, вписанной в равнобедренный треугольник, лежит на высоте, проведенной к основанию.

3. Докажите, что центр окружности, описанной около равнобедренного треугольника, лежит на медиане, проведенной к его основанию, или на ее продолжении.

4. Докажите, что треугольник является равнобедренным, если две его медианы равны.

5. Докажите, что если в треугольнике две высоты равны, то центр вписанной в него окружности лежит на одной из медиан этого треугольника, а центр описанной окружности — на той же медиане или ее продолжении.

6. Докажите, что середины сторон произвольного четырехугольника являются вершинами параллелограмма.

7. Докажите, что отрезки, соединяющие середины противоположных сторон равнобедренной трапеции, взаимно перпендикулярны.

8. Найдите длины отрезков, соединяющих середины сторон трапеции с равными диагоналями, если ее основания равны 7 см и 9 см, а высота равна 8 см.

9. Диагонали параллелограмма ABCD пересекаются в точке М . Упростите выражение: a) ; б) ; в) ; г) ; д) ; e) .

10. Точка М — середина отрезка АВ , а О — произвольная точка плоскости. Докажите, что .

11. Точки М и Р — середины диагоналей АС и BD трапеции ABCD с основаниями AD и ВС . Докажите, что .

12. Даны попарно неколлинеарные векторы , и . Постройте векторы: a) ; б) .

13. Вычислите площадь треугольника ABC , если АВ = 8,5 м, AC = 5 м, высота AH = 4 м и точка H лежит на отрезке ВС .

14. Вершины четырехугольника ABCD являются серединами сторон четырехугольника, диагонали которого равны 6 дм и пересекаются под углом 60°. Вычислите площадь четырехугольника ABCD .

Из предложенного набора задач в классе можно решить задачи 1, 2, 4, 6, 8, 9, 11, 13. Остальные задачи на дом.

При решении задачи 1 (б) полезно обратить внимание учащихся на прием «удвоения медианы» — откладывание на продолжении медианы AD за точку D отрезка, равного медиане.

2.2. Текущее повторение ранее пройденного

Текущее повторение в процессе изучения нового материала — весьма важный момент в системе повторения. Оно помогает устанавливать органическую связь между новым материалом и ранее пройденным.

Текущее повторение может осуществляться в связи с изучением нового материала .

В этом случае повторяется материал, естественно увязывающийся с новым материалом. Повторение здесь входит составной и неотъемлемой частью во вновь изучаемый материал.

Например, учителю предстоит на уроке геометрии доказать теорему о сумме внутренних углов треугольника. Готовясь к уроку, он в своем сознании припоминает те положения, которые необходимы для доказательства этой теоремы. Такими положениями являются: 1) величина развернутого угла, 2) понятие об углах, образующихся при пересечении двух параллельных прямых третьей, 3) неизменность суммы от замены ее слагаемых равными им слагаемыми.

У учителя эти положения расположены в определенной логической связи, необходимой для установления свойств внутренних углов треугольника. У учеников эти представления частично забыты, а другая часть находится в произвольном порядке, не подчиненном какому-либо требованию. Задача учителя состоит в том, чтобы, организуя текущее повторение, путем словесного воздействия и иллюстраций на чертеже, восстановить в памяти забытые учащимися положения и расположить их в том порядке, как они расположены у него.

К-во Просмотров: 275
Бесплатно скачать Дипломная работа: Организация процесса повторения в курсе геометрии 7-9 классов