Дипломная работа: Особенности астрономии ХХ века

В ХХ в. в астрономии произошли поистине радикальные изменения. Прежде всего, значительно расширился и обогатился теоретический фундамент астрономических наук. Начиная с 20-30-х годов, в качестве теоретической основы астрономического познания стали выступать (наряду с классической механикой) релятивистская и квантовая механика, что существенно раздвинуло "теоретический горизонт" астрономических исследований. Общая теория относительности создала возможность модельного теоретического описания явлений космологического масштаба и по сути впервые поставила космологию - эту чрезвычайно важную отрасль астрономии - на твердую теоретическую почву. А создание квантовой механики послужило чрезвычайно мощным импульсом развития как астрофизики, так и космогонического аспекта астрономии (в частности, выяснения источников энергии и механизмов эволюции звезд, звездных систем и др.); обеспечило переориентацию задач астрономии с изучения в основном механических движений космических тел (под влиянием гравитационного поля) на изучение их физических и химических характеристик. Выдвижение на первый план астрофизических проблем сопровождалось также интенсивным развитием таких отраслей астрономической науки, как звездная и внегалактическая астрономия.

Наряду с этим существенно совершенствовались и эмпирические методы астрономического познания. Астрономия стала всеволновой , т.е. астрономические наблюдения проводятся на всех диапазонах длин волн излучений (радио,- инфракрасный, оптический, ультрафиолетовый, рентгеновский и гамма - диапазоны). Появилась также возможность непосредственного исследования с помощью космических аппаратов и наблюдений космонавтов околоземного космического пространства, Луны и планет Солнечной системы. Все это привело к значительному расширению наблюдаемой области Вселенной и открытию целого ряда необычных (и, как правило, неожиданных и во многом необъяснимых) явлений.

Среди этих открытий особенное значение имеют нестационарные процессы во Вселенной:

· обнаружение в конце 40-х годов существования "звездных ассоциаций", представляющих собой группы распадающихся после своего рождения звезд;

· обнаружение в 50-х годах явлений распада скоплений и групп галактик;

· открытие в 60-е годы квазаров (Квазары - самые мощные из известных сейчас источников энергии. При сравнительно небольших размерах (не более 1 светового месяца) средний квазар излучает вдвое больше энергии, чем вся наша Галактика, имеющая в поперечнике размер в 100 тысяч световых лет и состоящая из 200 млрд. звезд (!). Для квазаров характерны и признаки явной нестабильности: переменность блеска и выбросы вещества с огромными скоростями)., радиогалактик, взрывной активности ядер галактик с колоссальным энерговыделением (~ 1 0 n эрг, где n = 6 0);

· нестационарных явлений в недрах звезд;

· нестационарных явлений в Солнечной системе (быстрый распад короткопериодических комет, планетарная эруптивная деятельность и др.).

Кроме того, к выдающимся астрономическим открытиям следует отнести обнаружение:

· "реликтового" излучения, которое является важнейшим аргументом в пользу теории "горячей" Вселенной;

· "рентгеновских звезд";

· пульсаров;

· космических мазеров на линиях некоторых молекул (воды, ОН и др.);

· вероятное открытие "черных дыр"; и др.

11.2. Новая астрономическая революция

Попытки объяснить эти и другие новейшие открытия столкнулись с рядом принципиальных трудностей, преодоление которых связано с необходимостью совершенствования теоретико-методологического инструментария современной астрономии. Все это привело к значительному возрастанию количества разрабатываемых астрофизических и космологических моделей, концепций, опирающихся на разные принципы и не связанных пока единой фундаментальной теорией.

На этом фоне происходит интенсивная дифференциация и интеграция знаний о Вселенной. Выделяются не только новые отрасли теоретической и наблюдательной астрономии, но в связи с успехами космической техники возникают прикладные отрасли астрономии. В то же время возрастает роль общетеоретических интегративных принципов, понятий, установок, которые формируются под влиянием математики, физики, других естественных и даже гуманитарных наук. Изменяется место астрономии в системе научного познания: она сближается не только с естественными и математическими, но и с гуманитарными науками, философией.

По сути, астрономия во второй половине ХХ века астрономия вступила в период научной революции, которая изменила способ астрономического познания - на смену классическому способу познания пришел "неклассический" способ астрономического познания. Свидетельством этого является радикальная смена методологических установок астрономического познания и астрономической картины мира.

Рассмотрим сначала основные элементы современной астрономической картины мира, а затем и методологические установки неклассической астрономии.

1.3. Солнечная система

11.3.1. Планеты и их спутники

Земля - спутник Солнца в мировом пространстве, вечно кружащийся около этого источника тепла и света, делающего возможным жизнь на Земле. Кроме Солнца и Луны самыми яркими из постоянно наблюдаемых нами небесных объектов являются соседние с нами планеты. Они принадлежат к числу тех девяти миров (включая и Землю), которые обращаются вокруг Солнца (а его радиус - 700 тыс. км., т. е. в 100 раз превышает радиус Земли) на расстояниях, достигающих нескольких миллиардов километров. Вся группа планет вместе с Солнцем называется Солнечной системой. Планеты, хотя и кажутся похожими на звезды, в действительности гораздо меньше последних и темнее. Планеты видны только потому, что они отражают солнечный свет, и, поскольку они гораздо ближе к Земле, этот свет кажется очень ярким. Но если бы мы перенесли к ближайшей из звезд наши самые мощные телескопы, то не смогли бы с их помощью даже различить эти ничтожные спутники Солнца.

Кроме планет в солнечную "семью" входят спутники планет (в том числе и наш спутник - Луна), астероиды, кометы, метеорные тела, солнечный ветер. Расположены планеты в следующем порядке: Меркурий, Венера, Земля (один спутник - Луна), Марс (два спутника - Фобос и Деймос), Юпитер (15 спутников), Сатурн (16 спутников), Уран (5 спутников), Нептун (2 спутника) и Плутон (один спутник). Мы к Солнцу в сорок раз ближе, чем Плутон, и в два с половиной раза дальше, чем Меркурий. Возможно, что за Плутоном есть еще одна или несколько планет, но поиски их среди великого множества звезд слабее 15-й величины слишком кропотливы и не оправдывают затраченного на них времени. Возможно, они будут открыты "на кончике пера", как это уже было с Ураном, Нептуном и Плутоном.

Планеты должны быть и около многих других звезд, однако прямые наблюдательные данные о них отсутствуют, и есть только некоторые косвенные указания. Другими словами, современная астрономия исходит из идеи множественности планетных систем во Вселенной. Хотя это - гипотетическое предположение и строгих его доказательств пока не существует.

С 1962 г. планеты и их спутники успешно исследуются космическими аппаратами. Изучены атмосферы и поверхность Венеры и Марса, сфотографированы поверхности Меркурия, облачный покров Венеры, Юпитера, Сатурна, вся поверхность Луны, получены изображения спутников Марса, Юпитера, Сатурна, колец Сатурна и Юпитера. Спускаемые космические аппараты исследовали физические и химические свойства пород, слагающих поверхность Марса, Венеры, Луны (образцы лунных пород были доставлены на Землю и тщательно изучены).

По физическим характеристикам планеты делятся на 2 группы:

1. планеты земного типа: Меркурий, Венера, Земля, Марс;

2. планеты-гиганты: Юпитер, Сатурн, Уран, Нептун.

О Плутоне известно мало, но, по-видимому, он ближе по своему строению к планетам земной группы.

11.3.2. Строение планет

Строение планет слоистое. Выделяют несколько сферических оболочек, различающихся по химическому составу, фазовому состоянию, плотности и др. характеристикам.

Все планеты земной группы имеют твердые оболочки, в которых сосредоточена почти вся их масса. Три из них (Венера, Земля и Марс) обладают газовыми атмосферами. Меркурий практически лишен атмосферы. Только Земля имеет жидкую оболочку из воды - гидросферу, а также биосферу (результат прошлой и современной деятельности живых организмов). Аналогом земной гидросферы на Марсе является криосфера - лед в полярных шапках и в грунте (вечная мерзлота). Одна из загадок Солнечной системы - дефицит воды на Венере.

Характеристики твердых оболочек планет относительно хорошо известны лишь у Земли. Модели внутреннего строения других планет земной группы стоятся главным образом на основании данных о свойствах веществе земных недр. Как и у Земли, в твердых оболочках планет выделяют:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 328
Бесплатно скачать Дипломная работа: Особенности астрономии ХХ века