Дипломная работа: Особенности обучения элементам геометрии в 5-6 классах с позиций пропедевтики изучения геометрии в средней школе
· вводятся новые геометрические фигуры (луч, параллельные прямые, биссектриса угла и т.д.), некоторые преобразования фигур;
· изучают новые величины, носителями которых являются знакомые фигуры (длина окружности, величина угла);
· проводится чёткое различие величин и фигур (отрезок и длина отрезка, угол и градусная мера угла);
· расширяется круг геометрических построений и используемых при этом инструментов.
Для школьников характерно восприятие геометрических фигур как целого чертежа, модели, которая пока ещё не отделима от воспринимаемого объекта. Знакомство школьников 5-6 классов с геометрическими фигурами, соотношениями между ними в большинстве случаев может быть доведено до уровня представлений. Эти представления отличаются друг от друга степенью обобщения. Многие из них несут в себе черты понятий, но это ещё не понятие. Например, школьники получают наглядное представление об отрезке – умеют выделить концы отрезка, отметить точки на отрезке и подсчитать при этом все образовавшиеся отрезки, учатся измерить длину отрезка, знакомятся с отрезком как носителем величины. Всё это создаёт хорошие предпосылки для формирования понятия отрезка.
Подготовительный курс геометрии в 5-6 классах знакомит учащихся с геометрической технологией и символикой, которые используются и в систематическом курсе. Ознакомление с некоторыми видами отображения фигур готовит учащихся к сознательному усвоению идей геометрических преобразований.
В 5 классе учащиеся имеют дело с такими геометрическими величинами, как длина, площадь, объём (длина отрезка, площадь прямоугольника, объём прямоугольного параллелепипеда). Знакомятся с величинами угла.
В 6 классе вводятся формулы длины окружности и площади круга, учащиеся знакомятся с понятиями параллельных и перпендикулярных прямых, координатной плоскости.
В курсе геометрии большое внимание уделяется выработке у учащихся умений и навыков в выполнении построений с помощью основных геометрических инструментов, а также формированию у них рациональных приёмов построения геометрических фигур. Это умение будет необходимо как при изучении систематического курса геометрии, так и при изучении курса черчения. В подготовительном курсе геометрии осуществляется связь теории с практикой. Теоретические положения раскрываются при решении задач бытового характера. Уроки геометрии в 5-6 классах включают задачи, позволяющие развивать у учащихся пространственные представления. Наиболее интересными и полезными для учеников 5-6 классов является задачи на развёртки (сделать развёртки, склеить модель), т.к. при решении этих задач ученики оперируют пространственными образами; происходит развитие практических, в том числе и графических умений учащихся; появляются навыки самоконтроля, а также осуществляются внутрипредметные и межпредметные связи. Изучение материала пропедевтического курса геометрии подготавливает учащихся к усвоению некоторых смежных дисциплин, изучаемых в школе.
Роль пропедевтики геометрических знаний становится еще более важной, поскольку в федеральных государственных образовательных стандартах общего образования второго поколения отмечено, что система математического образования в основной школе должна стать более динамичной за счет вариативной составляющей на всем протяжении второй ступени общего образования. В примерной программе по математике предусмотрено значительное увеличение активных форм работы, направленных на вовлечение учащихся в математическую деятельность, на обеспечение понимания ими математического материала и развития интеллекта, приобретения практических навыков, умения проводить рассуждения, доказательства. [28]. Изучению элементов геометрии в 5-6 классах в новых стандартах отводится большее количество часов и, соответственно, вводится больше новых понятий, что позволит углубить и расширить начальные геометрические знания учащихся.
Геометрический материал 5-6 классов закладывает фундамент для дальнейшего изучения геометрии. В этом заключается основная роль изучения элементов геометрии на уроках математики 5-6 классов.
§1.3 Особенности восприятия геометрического материала
Долгие годы геометрия как учебный предмет в школе строилась на дедуктивной (аксиоматической) основе и требовала для своего усвоения хорошо развитого теоретического (понятийного) мышления.
Вместе с тем основной целью изучения геометрии признавалось и развитие пространственных представлений (воображения) учащихся. Но наглядные представления о пространственных свойствах и отношениях являлись в аксиоматической геометрии лишь своеобразной иллюстрацией ее теоретических постулатов (аксиом, определений, теорем, понятий) и выполняли в этом смысле вспомогательную роль.
Такое построение содержания математического образования отвечало закономерностям математики как науки, но не соответствовало природе детского мышления, которое целостно, многомерно, креативно опирается на образное восприятие предметного мира, организованного определенным образом в пространстве. В курсе школьной геометрии пространственное мышление должно выполнять не вспомогательную, а основополагающую функцию, реализующую возможность человека ориентироваться в окружающем его реальном пространстве, в котором нет ни одного плоского объекта, изучаемого в планиметрии [8].
Следует отметить, что, по мнению психологов, в раннем подростковом возрасте происходит перестройка психики школьника, существенно изменяется характер учебной деятельности. Постепенно нарастающая взрослость подростка делает неприемлемыми для него привычные старые формы и методы обучения. Особенно актуальным в этом плане стоит вопрос о математическом образовании (в частности, геометрическом). Математика как наука и как школьный предмет имеет важную специфику: именно в математике самые конкретные объекты изучения являются абстрактными, скорее теоретическими, чем эмпирическими [15]. Так что при обучении математике в школе очень короток период перехода от эмпирического мышления к теоретическому, и учение идёт через передачу теоретических способов мышления, как раз через диалектическое «восхождение от абстрактного к конкретному».
Преподавание геометрического материала в средней школе предоставляет широкие возможности школьникам для более комфортного перехода от эмпирического вида мышления к теоретическому.
В этом плане рассмотрим вопрос о роли геометрического материала в обучении школьников 5-6-х классов в контексте понятий, введённых В. Ротенбергом, – однозначный и многозначный контекст мышления.
Под однозначным контекстом Ротенберг понимает характер мыслительной деятельности, при котором в процессе активного взаимодействия с миром для представления различных отношений в виде упорядоченной и стройной системы из всех бесчисленных связей между многогранными предметами и явлениями отбираются только немногие: определённые и внутренне непротиворечивые, важные для упорядоченного анализа.
В противовес этому многозначный контекст мышления подразумевает одновременное «схватывание» всех имеющихся связей. Отдельные элементы реальности, грани образов взаимодействуют друг с другом сразу во многих смысловых плоскостях [36].
В 1990-х гг. В. Ротенбергом (в рамках учения о функциональной асимметрии головного мозга) была выдвинута гипотеза о том, что левое полушарие головного мозга оперирует с информацией, сводящейся к однозначному контексту – отвечает за вербальное поведение, логическое мышление. Правое же полушарие способно целиком воспринимать многозначный контекст, интегрируя все многочисленные и даже противоречивые связи между объектами окружающего мира. Правое полушарие отвечает также за формирование многозначного «образа Я», соединяющего в себе всё огромное множество представлений человека о самом себе и о своих отношениях к окружающему – миру, социуму [32].
Если организация однозначного контекста необходима для взаимопонимания между людьми, анализа и закрепления знания, то организация многозначного контекста столь же необходима для целостного постижения и проникновения в суть внутренних связей между предметами и явлениями. По мнению Ротенберга, последняя и лежит в основе любого творчества, в котором действительность надо воспринимать во всей ее сложности и многогранности, во всем богатстве внутренних взаимосвязей [32].
Итак, правое полушарие является носителем неосознаваемых творческих потенций человека. Но важнейшая роль «правополушарной» способности к улавливанию множества связей, к организации многозначного контекста отнюдь не умаляет роли «левополушарного» мышления в творческой деятельности. Творческий процесс состоит из несколько тесно связанных между собой этапов, и нарушение любого из них отрицательно сказывается на конечном результате. Самое богатое воображение останется «вещью в себе», лишенной социального значения, если не пройдет очистительного этапа критической доработки, и плоды его не предстанут в том хорошо упорядоченном виде, который свойствен подлинным достижениям в науке и искусстве.
Разумеется, мозг функционирует как единое целое, объединяя оба способа организации контекста как взаимодополняющие компоненты мышления. Поэтому чрезвычайно важно развивать оба полушария головного мозга для воспитания гармоничного человека, способного к решению любых самых сложных задач.
Между тем в условиях нашей цивилизации все более доминирует однозначно понимаемый контекст.
Исследования различных учёных (в частности, Д.А. Фарбера) показывают возрастную динамику в доминировании левого или правого полушарий. Так, у детей от 3 до 7 лет в ситуации как непроизвольного, так и произвольного внимания активизируется преимущественно правое полушарие, и только начиная с 10-летнего возраста – левое. Сдвиг асимметрии в сторону относительного преобладания левого полушария становится особенно выраженным к концу подросткового периода. Особый интерес представляет тот факт, что у детей-правшей 8-9 лет даже при решении арифметических задач активизированным является правое полушарие, и только между 10 и 14 годами существенно возрастает активизированность левого полушария [19].
Таким образом, младший подростковый возраст (соответствующий 5-6 классам средней школы) является переломным в психическом развитии ребёнка. Одной из причин этого является то, что «вся современная система образования нацелена на развитие формально-логического мышления, на овладение способами построения однозначного контекста. Но чем больше усилий приложено в процессе воспитания для того, чтобы добиться доминирования логико-знакового мышления, тем больше усилий потребуется в дальнейшем для преодоления его ограниченности» [19]. По мнению А.Н. Землякова, «многозначность и образность мышления по сути своей входят в противоречие с традиционной парадигмой математическог