Дипломная работа: Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ
Приложение 1
Приложение 2
Приложение 3
Приложение 4
Введение
Одним из перспективных направлений в комплексном решении экологических проблем является разработка высокоэффективных процессов очистки промышленных газовоздушных выбросов, сточных вод и средств индивидуальной защиты органов дыхания. Важную роль в создании этих процессов играют хемосорбционные волокнистые материалы, обладающие более развитой удельной поверхностью, чем у гранулированных сорбентов, обеспечивающей высокие кинетические параметры процессов сорбции. Изучение механизма сорбции платиновых металлов на ионитах с различными функциональными группами является актуальным и этому вопросу в последнее время уделяется особое внимание.
В литературе есть сообщения об изучении механизма сорбции платиновых металлов на азот и серосодержащих волокнах. Однако публикаций об исследовании механизма сорбции платиновых металлов на комплексообразующих сорбентах сравнительно невелико.
Целью данной работы является изучение особенностей сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ. Определение лимитирующей стадии процесса сорбции палладия волокнами, а так же установление механизма сорбции хлорокомплексов палладия (II) на данных волокнах, влияние температуры и способов регенерации сорбентов.
1. Литературный обзор
1.1 Ионообменное равновесие
Ионный обмен - обратимый процесс стехиометрического обмена ионами между двумя контактирующими фазами. Обычно одна из этих фаз ионит, а другая раствор электролита [1].
Если ионит, содержащий только противоионы А, поместить в раствор, содержащий только противоионы В, то ионы А начнут замещаться ионами В из раствора. Через некоторое время установится равновесие: ионит и раствор будут содержать ионы обоих сортов в определенном соотношении. Такое состояние называется ионообменным равновесием[2].
Ионный обмен является обратимой химической реакцией. В соответствии с этим, должно, достигаться состояние равновесия, удовлетворяющее закону действующих масс.
RA + В+ ↔ RB + А+ ,
где R — матрица ионита с присоединенным к ней фиксированным ионом, А+ и В+ — подвижные ионы[3].
Ионообменное равновесие обусловлено концентрацией раствора, свойствами ионита и обменивающихся ионов, а также температурой. Селективность ионного обмена проявляется в различии абсолютных значений коэффициентовраспределения ионови, которые для рассматриваемого равновесия можно определить как
и (1),
где и - эквивалентные доли ионов А+ и В+ в ионите, и - в растворе.
Деля на , получим коэффициент селективности, или константу обмена , которая, зависит от концентрации обменивающихся ионов:
(2).
Введя поправки на коэффициенты активности ионов в растворе и , получают уточненный коэффициент селективности
(3).
Следует отметить, что постоянство значений уточненного коэффициента селективности сохраняется только при данной степени замещения. С изменением величина изменяется. В таких случаях рассчитывают истинную константу обмена:
(4).
Поскольку определениезатруднительно, предлагается избрать стандартное состояние ионита в А- и В- формах, в котором иравны единице.
Истинная константа равновесия обмена разновалентных ионов с зарядами ивыражается уравнением Никольского:
(5),
соответствующая взаимодействию эквивалентного числа ионов ионита и раствора:
На основе теоремы Больцмана Никольский показал, что соотношение коэффициентов активности ионов в твердой фазе не меняется, если свободная энергия их взаимодействия со средой остается постоянной. С известным приближением такое положение справедливо при замещении одного противоиона в ионите на другой, и это позволяет пользоваться для расчета констант обмена уравнением, аналогичным уравнению (3), в котором активности ионов в твердой фазе заменены их концентрациями: