Дипломная работа: Оценка вклада 137Cs и 40К в суммарную бета-активность 90Sr в пробах почвы отобранной на Семипалатинском
Практически более удобным оказалось характеризовать продолжительность жизни радиоактивного изотопа периодом полураспада Т1/2. Периодом полураспада Т1/2 называется то время, в течение которого распадается половина начального количества атомов данного радиоактивного вещества. Из соотношения (2) имеем
,(3)
откуда потенцированием получаем
.(4)
Периоды полураспада различных естественных изотопов весьма различны и выражаются в секундах, минутах, днях и годах. Постоянная радиоактивного распада выражается в обратных секундах. [10]
Вещества с большим периодом полураспада слабоактивны, имеют малое λ. У этих нуклидов период полураспада больше геологического возраста Земли.
1.3.1 Основные характеристики ионизирующего излучения
Все атомные и субатомные частицы, вылетающие из ядра атома при радиоактивном распаде:a, b, n, r, g и так далее - называют радиоактивными частицами, радиоактивным или ионизирующим излучением (ИИ), так как все они при прохождении через вещество:
- во-первых, приводят к его ионизации, к образованию горячих (высокоэнергетичных) и исключительно реакционно-способных частиц: ионов и свободных радикалов (осколков молекул, не имеющих заряда);
- во-вторых, могут приводить к активации (активированию) вещества, к появлению так называемой наведённой активности, то есть к превращению стабильных атомов в радиоактивные - появлению радионуклидов активационного происхождения.
Поэтому основными характеристиками ИИ являются энергия частиц, их пробег в разных средах или проникающая способность, а также их ионизирующая способность (особенно в смысле опасности для биологических объектов).
Энергию частиц измеряют в электрон-вольтах (эВ). Электрон-вольт - это энергия, которую приобретает электрон под действием электрического поля с разностью потенциалов (напряжением) в 1 вольт.
Проходя через вещество альфа- и бета-излучения в основном взаимодействуют с электронами атомов, передавая им свою энергию, которая расходуется на ионизацию (отрыв электрона от атома) и возбуждение (перевод электрона на более высшие орбитали).
Число ионизированных и возбужденных атомов образуемой альфа-частицей на единице длинны пути в среде, в сотни раз больше, чем у бета-частицы. Фотоны взаимодействуют с электронами атомов и с электрическим полем ядра. Проходя через вещество, фотонное излучение никогда не поглощается полностью. В этом его отличие от корпускулярного излучения.
Передача энергии фотонного излучения происходит в процессе фотоэлектрического поглощения, в результате которого фотон исчезает, расходуя свою энергию на отрыв электрона.
Таким образом, фотонное излучение непосредственно ионизации не производит, но в процессе взаимодействия с атомом передает часть или всю свою энергию электронам, которые затем производят ионизацию.
Принципиально по-иному происходит взаимодействие при прохождении нейтронов через вещество. Они взаимодействуют не с электронами, а только с ядрами атомов среды, передавая им часть своей энергии. Ядра, получившие от нейтронов часть кинетической энергии, вылетают из электронной оболочки и, будучи положительно заряженными, производят ионизацию атомов среды.[11]
1.3.2 Радиоактивный распад
Радиоактивный распад - это испускание, выбрасывание с огромными скоростями из ядер атомов «элементарных» (атомных, субатомных) частиц, которые принято называть радиоактивными частицами или радиоактивным излучением. При этом, как уже было сказано, в подавляющем большинстве случаев ядро атома (а значит, и сам атом) одного химического элемента превращается в ядро атома (в атом) другого химического элемента; или один изотоп данного химического элемента превращается в другой изотоп того же элемента.
Радиоактивный распад, как и все другие виды радиоактивных превращений, может быть естественным (самопроизвольным, спонтанным) и искусственным, вызванным попаданием в ядро стабильного атома какой-либо частицы извне.
Для естественных (природных) радионуклидов основными видами радиоактивного распада являются альфа- и бета минус-распад (хотя встречаются и другие). Названия “альфа” и “бета” были даны Эрнестом Резерфордом в 1900 году при изучении радиоактивных излучений.
Для искусственных (техногенных) радионуклидов кроме этого характерны также нейтронный, протонный, позитронный (бета-плюс) и более редкие виды распада и ядерных превращений (мезонный, К-захват, изомерный переход, «откалывание» и др.).[12]
Все виды самопроизвольного радиоактивного распада характеризуются временем жизни радионуклида и его активностью, то есть скоростью распада. Показателем времени жизни радионуклида, скорости его распада является период полураспада. Используется также радиоактивная постоянная или постоянная (константа) распада.
Период полураспада (T1/2)- время, в течение которого половина радиоактивных атомов распадается и их количество уменьшается в два раза. Периоды полураспада у всех радионуклидов разные - от долей секунды (короткоживущие радионуклиды) до миллиардов лет (долгоживущие).
Активность - это количество актов распада (в общем случае актов радиоактивных, ядерных превращений) в единицу времени (как правило, в секунду). Единицами измерения активности являются беккерель и кюри.
Беккерель (Бк) - это один акт распада в секунду (1 расп/сек). Единица названа в честь французского физика, лауреата Нобелевской премии Антуана Анри Беккереля.
Кюри (Ки) - 3,7×1010 (расп/сек). Эта единица возникла исторически: такой активностью обладает