Дипломная работа: Оценка воздействия проектируемого золоотвала Железногорской ТЭЦ на атмосферный воздух

– вклада оперативного мероприятия в снижение воздействия золоотвала на атмосферный воздух;

– достаточности планируемого оперативного мероприятия для обеспечения нормативного качества атмосферного воздуха.


2. Оценка воздействия проектируемого золоотвала Железногорской ТЭЦ на атмосферный воздух

2.1 Основные исходные данные

Основные исходные данные для расчета ветровой эрозии золоотвала приведены в таблице 2.1. Источником исходных данных является [7].

Таблица 2.1 – Основные исходные данные

Наименование параметра Величина параметра
1 Содержание СаО в золошлаках, % 25
2 Гранулометрический состав золошлаков на поверхности золошлаковой зоны сухого пляжа, % 1-0,5мм – 0,2; 0,5-0,25мм – 8; 0,25-0,125мм – 18; 0,125-0,063мм – 18; 0,063-0,04мм – 30; <0,04мм – 25,8
3 Агрегатная плотность пылевых частиц ρп, кг/м3 2850

4 Характеристика ветрового режима,

в том числе:

– повторяемость в течение года скорости ветра различных градаций Рui, % 0-1м/с – 41; 2-3м/с – 31; 4-5м/с – 19; 6-7м/с – 6; 8-9м/с – 2; 10-11м/с – 0,4; 12-13м/с – 0,1; 14-15м/с – 0,04; 16-17м/с – 0,02; 18-20м/с – 0,001
– максимальная скорость ветра с повторяемостью 5 %, м/с 5,5
– повторяемость различных направлений ветра в течение года (по восьмирумбовой розе ветров) Рi, %

С – 3; СВ – 6; В – 5; ЮВ – 2;

Ю – 15; ЮЗ – 45; З – 20; СЗ – 4

5 Относительная продолжительность периодов ограничения пыления по состоянию поверхности, % годового фонда времени,

в том числе:

67,4
– устойчивый снеговой покров τсн 46,3
– увлажнение талыми водами τт 16,7
– осадки τос 4,4
6 Относительная продолжительность штиля τшт, % годового фонда времени 23
7 Площадь золового поля Sотв, м2

1 секция – 181474

2 секция – 179690

8 Площадь пылящих участков (площадь карты) S, м2 12500

2.2 Характеристика эродируемых частиц

Предельный (максимальный) размер эродируемых частиц dmax, мм, определяется по средней скорости ветра в пылеопасный период U'ср, м/с, и по агрегатной плотности пылевых частиц ρп=2,85 г/см3. Принимаем U'ср=5,5 м/с. При U'ср=5,5 м/с и ρп=2,85 г/см3 значение dmax определено по рисунку 4 [8]: dmax=240 мм.

Средневзвешенный размер dпср, мм, эродируемых частиц в пылящем слое (при dп<dmax) определяется по формуле

dпср=Σ(dпа)i/Σаi, (2.1)

где i – количество градаций размера частиц;

а – весовая доля соответствующей градации.

Подставляя данные в формулу (2.1), получим


dпср=[((1+0,5)/2)*0,002+((0,5+0,125)/2)*0,08+((0,25+0,125)/2)*0,18+

+((0,125+0,063)/2)*0,18+((0,063+0,04)/2)*0,3+((0,04*0,258)/(18+18+30+25,8)= 0,10194мм.

Граничный размер эродируемых частиц, разделяющий сальтирующие и витающие частицы, dгр, мм, определяется по агрегатной плотности пылевых частиц ρп, г/см3. При ρп=2,85 г/см3 значение dгр определено по рисунку 3 [8]: dгр=0,0285 мм.

Пороговая динамическая скорость ветрового потока для средневзвешенного размера эродируемых частиц в слое U*t, м/с, определяется по формуле

U*t=0,1(σgdпср)0,5, (2.2)

где g=9,81 м/с2 – ускорение силы тяжести;

σ=ρп/ρв;

ρп=2850 кг/м3 – агрегатная плотность пылевых частиц;

К-во Просмотров: 567
Бесплатно скачать Дипломная работа: Оценка воздействия проектируемого золоотвала Железногорской ТЭЦ на атмосферный воздух