Дипломная работа: Передающее устройство одноволоконной оптической сети

Тем не менее, преимущества от применения волоконнооптических линий связи настолько значительны, что, несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

2.5 Особенности одноволоконных оптических

систем передачи

Широкое применение на городской телефонной сети волоконно-оптических систем передачи для организации меж узловых соединительных линий позволяет решить проблему увеличения пропускной способности сетей. В ближайшие годы потребность в увеличении числа каналов будет быстро расти. Наиболее доступным способом увеличения пропускной способности волоконных оптических систем передачи в два раза является передача по одному оптическому волокну двух сигналов в противоположных направлениях. Анализ опубликованных материалов и завершенных исследований и разработок одноволоконных оптических систем передачи позволяет определить принципы построения таких систем.

Наиболее распространенные и хорошо изученные одноволоконные оптические системы передачи, работающие на одной оптической несущей, кроме оптического передатчика и приемника содержат пассивные оптические разветвители. Замена оптических разветвителей на оптические циркуляторы позволяет уменьшить потери в линии 6 дБ, а длину линии – соответственно увеличить. При использовании разных оптических несущих и устройств спектрального уплотнения каналов можно в несколько раз повысить пропускную способность и соответственно снизить стоимость в расчете на один канало- километр.

Увеличить развязку между противонаправленными оптическими сигналами, снизить требования к оптическим разветвителям, а следовательно, уровень помех и увеличить длину линии можно путем специального кодирования, при котором передача сигналов одного направления осуществляется в паузах передачи другого направления. Кодирование сводится к уменьшению длительности оптических импульсов и образованию длительных пауз, необходимых для развязки сигналов различных направлений. В волоконнооптических системах передачи, построенных подобным образом, могут быть использованы эрбиевые волоконнооптические усилители. Дуплексная связь организуется по принципу разделения по времени, которое изменяется с помощью изменения направления накачки.

Развязку между оптическими сигналами можно увеличить, не прибегая к сужению импульсов, если для передачи в одном направлении используется когерентное оптическое излучение и соответствующие методы модуляции, а в другом – модуляцию сигнала по интенсивности. При этом существенно уменьшается влияние как оптических разветвителей, так и обратного рассеяния оптического волокна.

Если позволяет энергетический потенциал аппаратуры, на относительно коротких линиях может быть использован только один оптический источник излучения на одном конце линии. На другом конце вместо модулируемого оптического источника применяется модулятор отраженного излучения. Такой метод дуплексной связи по одному оптическому волокну обеспечивает высокую надежность оборудования и применение волоконнооптических систем передачи в экстремальных условиях эксплуатации.

По достижении высокого уровня развития волоконнооптической техники, когда станет практически возможным передавать оптически сигналы на различных модах оптического волокна с достаточной для волоконнооптической системы передачи развязкой, дуплексная связь по одному оптическому волокну может быть организована на двух разных модах, распространяющихся в разных направлениях, с использованием модовых фильтров и формирователей мод излучения.

Каждая одноволоконная оптическая система передачи из рассмотренных типов имеет достоинства и недостатки. В таблице 2.1 показаны достоинства (знаком «+ ») систем, их возможности в отношении достижения наилучших параметров.

Таблица 2.1 - Сравнительная характеристика принципов построения одноволоконных оптических систем передачи.

Тип волоконно- оптической системы передачи

Минимальное затухание, максимальная длина РУ

Защищен-ность сигналов

Большой объем передаваемой информации

Относи-тельно низкая стоимость

Высокая надежность и стойкость к внешним воздействиям

С оптическими разветвителями

+

С оптическими циркуляторами

+

Со спектральным уплотнением

+ +
С разделением по времени с использованием оптических переключателей +
С разделением по времени с использованием оптических усилителей + +
С когерентным излучением в одном направлении и модуляцией интенсивности в другом + +
С одним источником излучения + +
С модовым разделением +
С когерентным излучением для обоих направлений с разными видами модуляции + + +

2.6 Построение передающих и приемных устройств в волоконнооптических системах передачи

2.6.1 Виды модуляции оптических колебаний.

Для передачи информации по оптическому волокну необходимо изменение параметров оптической несущей в зависимости от изменений исходного сигнала. Этот процесс называется модуляцией.

Существует три вида оптической модуляции:

Прямая модуляция . При этом модулирующий сигнал управляет интенсивностью (мощностью) оптической несущей. В результате мощность излучения изменяется по закону изменения модулирующего сигнала (рис.2.9 ).


Внешняя модуляция. В этом случае для изменения параметров несущей используют модуляторы, выполненные из материалов, показатель преломления которых зависит от воздействия либо электрического, либо магнитного, либо акустического полей. Изменяя исходными сигналами параметры этих полей, можно модулировать параметры оптической несущей (рис.2.10 ).

Внутренняя модуляция. В этом случае исходный сигнал управляет параметрами модулятора, введённого в резонатор лазера (рис.2.11 ).

Для внешней модуляции электрооптические (ЭОМ) и акустооптические (АОМ) модуляторы.

Принцип действия электрооптического модулятора основан на электрооптическом эффекте – изменении показателя преломления ряда материалов под действием электрического поля. Эффект, когда показатель преломления линейно зависит от напряженности поля, называется эффектом Поккельса. Когда величина показателя преломления нелинейно зависит от напряженности электрического поля, то это эффект Керра.

Акустооптические модуляторы основаны на акустооптическом эффекте – изменении показателя преломления вещества под воздействием ультразвуковых волн. Ультразвуковые волны возбуждаются в веществе с помощью пъезокристалла, на который подается сигнал от генератора с малым выходным сопротивлением и большой акустической мощностью.

Наиболее простым с точки зрения реализации видом модуляции является прямая модуляция оптической несущей по интенсивности на основе полупроводникового источника излучения. На рис.2.12 представлена схема простейшего прямого модулятора. Здесь исходный сигнал через усилитель подаётся на базу транзистора V1, в коллектор которого включен излучатель V2. Устройство смещения позволяет выбрать рабочую точку на ваттамперной характеристике излучателя.


2.6.2 Оптический передатчик прямой модуляции

Структурная схема оптического передатчика прямой модуляции приведенная на рис.2.13 , является оптимальной, т.к. наиболее рационально реализует все функциональные возможности и достоинства выбранного вида модуляции.

К-во Просмотров: 353
Бесплатно скачать Дипломная работа: Передающее устройство одноволоконной оптической сети