Дипломная работа: Плоские кривые
Понятие линии определилось в сознании человека в доисторические времена. Траектория брошенного камня, струя воды, лучи света, очертания цветов и листья растений, извилистая линия берега реки и моря и другие явления природы привлекали внимание наших предков и, наблюдаемые многократно, послужили основой для постепенного установления понятия линии.
Однако потребовался большой исторический период прежде чем люди стали сравнивать между собой формы кривых линий и отличать одну кривую от другой. Первые рисунки на стенах пещерного жилища, примитивные орнаменты, украшавшие домашнюю утварь, свидетельствуют о том, что люди научились уже не только отличать прямую от кривой, но и различать формы отдельных кривых и в их сочетаниях находить удовлетворение зарождающихся эстетических потребностей. Но всё это было ещё далеко от того абстрактного понимания линии, которым располагает математика сейчас.
Правда, исторические памятники глубокой древности показывают, что у всех народов на известной ступени их развития имелось понятие окружности, не говоря уже о прямой линии. Употреблялись примитивные инструменты для построения этих линий и были попытки измерять площади, ограничиваемые прямыми и окружностью. Как видно, например, из древнейшего памятника математической культуры – «папируса Ринда», египтяне за 17 – 20 веков до начала нашей эры занимались квадратурой круга и получили довольно хорошее приближение для числа p, равное , или 3, 1604. Но лишь с возникновением математики как науки стало развиваться учение о линиях, достигшее в трудах греческих математиков высокого совершенства.
Греческие учёные создали теорию конических сечений – линий, имеющих особенно большое значение в науке и технике. Открытие их приписывается Менехму (4 век до н.э.), ученику Евдокса Книдского и, как полагают, учителю Александра Македонского. Менехм определял эти кривые как сечения конуса плоскостью, перпендикулярной к его образующей.
Что послужило поводом к этому открытию? Может быть, поиски решения знаменитой делосской задачи об удвоении куба, может быть практический вопрос о том, насколько должен быть вытянут овал, находящийся в качестве архитектурного сооружения на фронтоне здания, чтобы с известного места перед зданием он казался кругом.
Есть данные полагать, что Менехм знал свойства параболы и гиперболы, выражаемые в наши дни равенствами y2 =2px и xy=c, и использовал эти свойства для делосской задачи удвоения куба. К сожалению это первое сочинение по теории конических сечений было утеряно. Также не дошла до нас работа греческого геометра Аристея, написавшего пять книг о пространственных местах», из которых много заимствовал Евклид для своей также утраченной) работы о конических сечениях.
Архимед решил задачу о квадратуре сегмента параболы. Сравнивая фигуры, вписанные в эллипс и в окружность, построенную на большой оси эллипса как на диаметре, он определил и площадь эллипса.
Однако все сведения о конических сечениях были ещё разрозненны. Первая методическая обработка конических сечений принадлежит Аполлонию Пергскому (3 – 2 в. до н.э.). Это был трактат «О конических сечениях». В своём трактате Аполлоний систематизировал всё, что было известно до него, и открыл ряд важных свойств, установил их названия.
Но не только конические сечения открыты греками. Ряд математиков в поисках решения великих проблем древности – задачи о трисекции угла, об удвоении куба и о квадратуре круга – использовал для образования кривых идею движения. Так возникли спираль Архимеда, циклоида, квадратрисса Динострата. В то же время первоначальный метод – образование кривых путём рассечения поверхности плоскостью был использован для образования кривых Персея как сечений тора.
В эпоху средневековья великие достижения греческих учёных были забыты.
К кривым математическая наука обратилась только в 17 веке, в связи с созданием аналитической геометрии.
1637 год – одна из великих дат в истории математики – год появления книги Р. Декарта «Геометрия», в которой были изложены основы метода координат. Открытие этого метода для исследования кривых было фактом первостепенного значения. Метод координат не только создал общий, единообразный способ символического задания каждой кривой в виде соответствующего ей уравнения, он давал также неограниченную возможность беспредельно увеличивать количество изучаемых кривых, поскольку каждое произвольно записанное уравнение, связывающее между собой две переменные величины, представляло теперь, вообще говоря, новую кривую.
Открытие метода координат подготовило в свою очередь открытие могущественного метода науки – исчисления бесконечно малых. Рождение дифференциального и интегрального исчисления имело особо важное значение для изучения свойств кривых. В связи с многочисленными проблемами механики, астрономии, геодезии, оптики, возникшие в 17 – 18 в., стимулировали интерес к исследованию инфинитезимальных свойств линий. Эти проблемы привели к открытию новых линий. Роберваль и Паскаль показывают, что дуга спирали Архимеда равна дуге параболы, выбранной определённым образом и что, следовательно, задача спрямления спирали идентична задаче спрямления параболы. Ферма обобщает это предложение на алгебраические спирали высших порядков, устанавливая, что их спрямление сводится к спрямлению парабол высших порядков. Нейль открывает алгебраическую кривую, которая спрямляется алгебраически (парабола Нейля). К этому же времени относится спрямление логарифмической спирали, выполненное Торичелли, спрямление эпи- и гипоциклоид, выполненное Де ла Гиром. Фаньяно в 1714 году, исследуя вопрос о спрямлении лемнискаты, заложил основы теории эллиптических функций.
Наряду с исследованием геометрических свойств кривых исследуются и их механические свойства. Гюйгенс открывает изохронность циклоиды. И. Бернулли показывает, что циклоида является брахистохроной в пустом пространстве. Исследуются механические свойства параболы Нейля, цепной линии, овалов Кассини, овалов Декарта и целого ряда других теперь хорошо известных кривых.
Не только практические потребности века – запросы промышленности, конструирование машин и механизмов, постройка плотин и шлюзов – постоянный и глубокий интерес к исследованию кривых у этих учёных, но и та «радость созерцания формы», которая, по словам Клейна, характеризует истинного геометра.
Увлечение аналитическим методом исследования кривых, особенно характерное для 17 века, с течением времени вызвало реакцию со стороны некоторых учёных. Как недостаток этого метода отмечалось то обстоятельство, что употребление его не раскрывает естественного происхождения кривой, так как объектом исследования фактически является не сама кривая, а соответствующее ей уравнение. Плодотворные попытки возвратиться к синтетическому методу древних породили новое направление в исследовании свойств кривых второго порядка. Первые достижения здесь связываются с именами Дезарга и Паскаля. Дезарг, исследуя проективные свойства фигур и используя установленное им понятие инволюции, обогатил теорию кривых второго порядка новыми открытиями. Пскаль открывает свою знаменитую теорему о соотношении между шестью точками конического сечения, согласно которой во всяком шестиугольнике, вписанном в кривую второго порядка, точки пересечения противоположных сторон лежат на одной прямой. Де ла Гир приходит к важному предложению о том, что директриса кривой второго порядка является полярой её фокуса.
Новые методы исследования свойств кривых второго порядка развиваются в 19 столетии. Брианшон доказывает теорему, двойственную теореме Паскаля, и изучает проективные свойства гиперболы. Понселе исследует кривые второго порядка с помощью открытого им метода проективных соответствий. Штейнер и Шаль исследуют проективные свойства этих кривых на основе понятия двойного отношения и рассматривают их как производные от образов первой ступени.
Критика аналитического метода исследования формы и свойств кривых была основана, как было уже сказано, на том обстоятельстве, что при пользовании этим методом отсутствует наглядный образ этой кривой и исчезают геометрические построения. Она дополнялась и другими соображениями. Указывалось, что система координат является посторонним элементом исследования, с которым кривая связывается искусственно.
Эти воззрения повели с одной стороны, к созданию так называемой алгебраической геометрии, основы которой были заложены Гессе и Клебшем. Исследование свойств кривых сводилось здесь к исследованию инвариантов алгебраических форм.
Крупнейшим достижением этого направления в исследовании кривых было создание общей теории алгебраических кривых. Особые достижения в развитии этой теории связываются с именем Плюккера. Однако в алгебраической геометрии полностью отрешиться от системы координат как постороннего элемента всё-таки не удалось.
Другое направление привело к представлению о так называемом натуральном уравнении кривой. Натуральное уравнение уже не зависит от положения системы координат и от вида её; точнее говоря, оно не предполагает вообще наличия системы координат. Это уравнение функционально связывает радиус кривизны кривой и длину её дуги, т.е. те элементы, которые органически связаны с самой природой исследуемой линии. Было доказано, что натуральное уравнение полностью определяет кривую с точностью до её положения на плоскости. Наибольших успехов это направление исследования кривых достигло в работах Чезаро, который присвоил ему название внутренней или натуральной геометрии.
В заключение о плодотворной идее использования векторного аппарата при исследовании свойств линий, которая связывается с именем Грассмана, и о топологическом методе исследования кривых, имеющих наиболее сложные формы.
2. Способы образования кривых
Исследование особенностей формы кривой и её свойств средствами дифференциальной геометрии возможно, когда кривая выражена в аналитической форме, т.е. уравнением. Однако, прежде чем исследовать уравнение кривой, необходимо его составить на основании некоторых данных. Для этого надо рассмотреть способы образования кривых. [1]
1. Кривая определяется как линия пересечения данной поверхности плоскостью, положение которой определено.
В истории развития учения о кривых этот способ является первым. Греки определяли кривые второго порядка как сечения кругового конуса. Таково же происхождение кривых Персея, получаемых в результате сечений плоскостью поверхности тора. Эвольвента круга может быть определена как линия пересечения поверхности касательных к винтовой линии, перпендикулярной к её оси и т.д.
2. Кривая определяется как геометрическое место точек, обладающих данным свойством.
Этот способ особенно употребителен. Он широко практиковался ещё греческими математиками; так Евклид рассматривал конические сечения как геометрические места точек, сохраняющих постоянное отношение расстояний от данной точки и от данной прямой. Как геометрическое место точек была определена Диоклесом его циссоида. Таким же способом определяет Никомед конхоиду. Такие линии, как овалы Декарта, овалы Кассини, улитка Паскаля, строфоида, верзиера и целый ряд других кривых, определяются обычно как геометрические места.
3. Кривая определяется как траектория точки, характер движения которой обусловлен тем или иным образом.
Кинематический способ образования линий был также хорошо известен греческим учёным. Как траекторию точки, участвующей одновременно в двух равномерных движениях, одно из которых совершается по прямой, а другое – по окружности, определил Архимед свою спираль. Все циклоидальные кривые являются траекториями точки, жёстко связанной с кругом, который катится без скольжения по окружности другого круга. Кинематическим путём определяется квадратриса Динострата как траектория точки пересечения вращающегося радиуса окружности с хордой, двигающейся параллельно самой себе. Лемниската Бернулли может быть определена как траектория середины большого звена шарнирного антипараллелограмма, противоположное звено которого закреплено. Кинематически определяются розы, кривые скольжения и многие другие линии. Кинематический способ задания кривой полагался Декартом в основу определения кривых методом координат.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--