Дипломная работа: Подсистема выделения текстильных волокон в задачах экспертизы
Для снятия текстильных волокон с поверхности предметов пользуются инструментами и липкими пленочными материалами. Инструментами в данном случае служат пинцеты, скальпели, шпатели и др. Наиболее эффективны адгезионные пленочные материалы. Преимущество их применения состоит в том, что при этом сохраняется картина распределения волокон в наслоениях и одновременно с волокнами снимаются другие сопутствующие им микрообъекты. Изъятые волокна могут быть подвергнуты предварительному микроскопическому исследованию непосредственно на пленке.
1.2 Методы обработки изображений
Процесс распознавания объектов изображений представляет собой совокупность этапов выделения признаков, характеристик и классификации объектов по ним. Полученная на первом этапе информация является входной к этапу классификации. В качестве такой информации обычно используется либо контурное, либо скелетное представление объекта (когда текстурные характеристики не анализируются). Это связано с тем, что существенно расширяются возможности распознавания, когда объекты представлены в таком виде. Однако следует отметить, что скелетное и контурное представления имеют свои особенности, преимущества, недостатки и по сравнению друг с другом, и по сравнению с другими характеристиками, получаемыми на первом этапе.[2]
Контурное представление кажется более предпочтительным, нежели скелетное, в плане информативности. Очевидно, информативность контура выше, поскольку, имея контурное представление всегда можно получить скелетное, в то время как обратная операция не дает однозначного результата. Таким образом, происходит потеря некоторой информации об объекте. Иногда это приводит к упрощению процесса распознавания, а иногда затрудняет его. Следует отметить, что в плане доступности информации предпочтительным является скелетное представление. Действительно, осуществить структурный анализ формы объекта по скелету проще, чем по контуру. Это связано с тем, что в скелетном представлении явно выражены узлы (точки ветвления), линии, углы. Таким образом совместное использование распознавания по контуру и по скелету представляется наиболее целесообразным, когда требуется повышенное качество распознавания и не накладываются временные ограничения. К сожалению последнее возможно далеко не всегда. Поэтому обычно используется какое-либо одно представление в зависимости от класса объектов, подлежащих распознаванию. Например, для распознавания линейных объектов используются скелеты, а для площадных – контура.
По виду анализа алгоритмы[3] распознавания объектов по контуру можно разделить на три группы:
статистический;
структурный;
синтаксический.
По технологии обработки контурной информации среди алгоритмов распознавания можно выделить три основные группы:
алгоритмы, отслеживающие и обрабатывающие только граничные точки;
алгоритмы, отслеживающие граничные и некоторые другие точки;
алгоритмы, выделяющие и обрабатывающие граничные элементы (точки, штрихи) статистическими методами.
Методы выделения контура условно можно разделить на следующие группы: методы выделения перепадов яркости; методы отслеживания(или обхода) контуров; сканирующие методы выделения контуров.
В методах первого класса в окрестности каждой точки вычисляют градиент перепада яркости. Точки резкого изменения градиента выделяются как контурные. Таким образом, строится контурная модель, часто состоящая из набора незамкнутых штрихов. Эти методы в основном используются в полутоновых и цветных изображениях. На основании такой модели очень трудно описать форму объектов. Поэтому чаще всего исходные изображения сводят к бинарным. На последних в основном используются методы двух других классов, так как контур можно получить путем локального логического анализа изображения. Сканирующие методы позволяют выделять контуры объектов в процессе однократного просмотра исходного изображения. Для этого используются описания двух соседних строк изображения, списковые структуры, методы переиндексации.
Методы отслеживания наиболее проработаны и просты в реализации. Однако в большинстве из них сначала выделяются границы, а затем осуществляется их аппроксимация. Это требует больших затрат памяти и времени.
Более универсальный подход – совмещение этапов отслеживания и аппроксимации контура. Эффективность с точки зрения машинного времени для сжатия контурного описания достигается за счет применения локальных методов линейной аппроксимации, основанных на анализе геометрических особенностей заданной кривой. Различные эвристики позволяют сделать операцию аппроксимации, линейно зависящей от количества точек контура.
На исходном растре возможно наличие посторонних шумов. Поэтому для выделения элементарных объектов графического изображения необходимо устранить эти шумы.
Существует много критериев, по которым оценивается улучшенное изображение. Это, например, улучшение качества снимка для его визуального восприятия, минимизация среднеквадратичного отклонения исходного изображения от обработанного, сравнение с эталоном и т.д. В нашем случае нет идеального изображения, к которому нужно стремиться или с которым можно сравнивать. Цель фильтрации шумов графических изображений заключается в устранении помех, которые могут повлиять на структуру и форму выделенных объектов. Другими словами, данная операция должна подготовить изображение для операций утоньшения и выделения контуров с тем, чтобы в последующем на растровом изображении были выделены объекты, в точности соответствующие исходным. Исходя из анализа графических изображений, для разработки надежных алгоритмов фильтрации выделены основные виды помех, присутствующие на изображении.
1.3 Представление изображения в форматах RGB и HSB
Согласно работе [4] основой теории цветового зрения является тот установленный экспериментально факт, что все цвета могут быть получены путем сложения (смешения) трех световых потоков, например, красного, зеленого и синего с высокой насыщенностью (RGB – представление). Стандартная колориметрическая система RGB была принята для цветовых измерений всеми странами мира в 1931г. В её основу были положены исследования, проведенные английским физиком Д. Максвеллом, который в 1860 г. построил равносторонний цветовой треугольник. Вершины последнего соответственно характеризуют спектральные цвета: красный R (l = 630 нм), зеленый G (l = 528 нм), синий B (l = 457нм), как наиболее равномерно распределенные по спектру: красный – на низких частотах, зеленый – на средних и синий – на высоких частотах.
Экспериментально установлено (закон Грассмана), что количественно и качественно световой поток может быть определен следующим равенством:
F’ = r’R + g’G + b’B = mF,(1.1)
где F’ - заданный или искомый световой поток;
r’, g’, b’ – количества или модули цветов красного R, зеленого G или синего B;
произведения r’R, g’G, b’B называются цветовыми компонентами потока;
m = r’ + g’ + b’ – представляет собой сумму (алгебраическую) количеств (модулей) цветов и называется цветовым модулем;
F – цветность потока F’.
Воспроизведение каждого цвета при установленных основных цветах однозначно, то есть каждому воспроизведенному цвету соответствует только одна комбинация основных цветов. Воспроизведенный цвет определяется количеством основных цветов r’, g’, b’. Однако оперировать этими количествами неудобно и модули принято выражать в количествах единичных цветов. Для этого вводятся относительные величины:
r = r’/(r’+g’+b’); g = g’/(r’+g’+b’); b = b’/(r’+g’+b’),(1.2)
характеризующие цветность и называемые координатами цветности.
Из приведенных выше соотношений следует, что r + g + b=1.