Дипломная работа: Полное магнетосопротивление ферромагнетиков

Для ферромагнитных тел намагниченность является сложной нелинейной функцией . Зависимость от величины называется технической кривой намагниченности (рис. 1а.). Кривая указывает на явление магнитного насыщения: начиная с некоторого значения , намагниченность практически остается постоянной, равной (намагниченность насыщения), - магнитная постоянная в СИ.

Относительная магнитная проницаемость ферромагнетиков, в отличие от пара- и диамагнетиков имеет весьма большие значения и зависит от индукции магнитного поля, в котором находится вещество. Например, для железа =5000, для пермаллоя (78% Ni и 22% Fe) =100 000.

Изучение зависимости намагниченности железа и других ферромагнитных материалов от напряженности внешнего магнитного поля обнаруживает ряд особенностей этих веществ, имеющих важное практическое значение.

Рис. 1а

Возьмем кусок ненамагниченного железа, поместим его в магнитное поле и будем измерять намагниченность железа I , постепенно увеличивая напряженность внешнего магнитного поля H . Намагниченность I возрастает сначала резко, затем все медленнее и, наконец, при значениях H около нескольких сот эрстед намагниченность перестает возрастать: все элементарные токи уже ориентированы, железо достигло магнитного насыщения. Графически зависимость величины I ( H ) в описываемом опыте изображается кривой ОА на рис. 1б. Горизонтальная часть этой кривой вблизи А соответствует магнитному насыщению.

Достигнув насыщения, начнем ослаблять внешнее магнитное поле. При этом намагниченность железа уменьшается, но убывание это идет медленнее, чем раньше шло его возрастание. Зависимость между величинами I ( H ) в этом случае изображается ветвью кривой на рис. 1б. Мы видим, таким образом, что одному и тому же значению H могут соответствовать различные значения намагниченности (точки х, х и х" на рис. 1б) в зависимости от того, подходим ли мы к этому значению со стороны малых или со стороны больших значений H . Намагниченность железа зависит, стало быть, не только от того, в каком поле данный кусок находится, но и от предыдущей истории этого куска. Это явление получило название магнитного гистерезиса, т.е отставание изменения величины намагниченности ферромагнитного вещества от изменения внешнего магнитного поля, в котором находится вещество. [1]

Когда внешнее магнитное поле становится равным нулю, железо продолжает сохранять некоторое остаточную намагниченность, величина которого характеризуется отрезком ОС нашего графика. В этом и заключаетсяпричина того, что из железа или стали можно изготовлять постоянные магниты.

Для дальнейшего размагничивания железа нужно приложить внешнее магнитное поле, направленное в противоположную сторону. Ход изменения намагниченности I при возрастании напряженности этого противоположно направленного поля изображается ветвью CDE кривой. Лишь когда напряженность этого поля достигнет определенного значения (в нашем опыте значения, изображаемого отрезком OD ) , железо будет полностью размагничено (точка D ). Таким образом, величина напряженности размагничивающего поля (отрезок OD ) является мерой того, насколько прочно удерживается состояние намагничивания железа. Ее называют коэрцитивной силой. При уменьшении напряженности поля обратного направления и затем при возрастании напряженности поля первоначального направления ход изменения намагничивания железа изображается ветвью кривой EC'A. При новом повторении всего цикла размагничивания, перемагничивания и повторного намагничивания железа в первоначальном направлении форма этой кривой повторяется.


Рис. 1б. Кривая намагниченности железа: зависимость намагниченности I от напряженности внешнего магнитного поля H . Стрелки указывают направление процесса

(Ветвь ОА изображает ход намагничивания исходного ненамагниченного материала и не повторяется при повторных циклах. Для того чтобы вновь воспроизвести ветвь ОА , необходимо привести материал в первоначальное ненамагниченное состояние. Для этого достаточно, например, сильно нагреть его.)

Из рис. 1б видно, что эта кривая, изображающая ход зависимости намагниченности железа I от напряженности внешнего поля H , имеет вид петли. Ее называют петлёй гистерезиса для данного сорта железа или стали. Форма петли гистерезиса является важнейшей характеристикой магнитных свойств того или иного ферромагнитного материала.

В частности, зная ее, мы можем определить такие важные характеристики этого материала, как его магнитное насыщение, остаточное намагничивание и коэрцитивную силу.

Рис. 2. Кривые намагниченности для различных сортов железа и стали:

1 — мягкое железо; 2 — закаленная сталь; 3 — незакаленная сталь

На рис. 2 показана форма петли гистерезиса для различных сортов железа и стали.

Коэрцитивная сила и форма петли гистерезиса характеризуют свойство ферромагнетика сохранять остаточное намагничивание и определяют использование ферромагнетиков для различных целей. Ферромагнетики с широкой петлей гистерезиса называются жесткими магнитными материалами (углеродистые, вольфрамовые, хромовые, алюминиево-никелевые и другие стали). Они обладают большой коэрцитивной силой и используются для создания постоянных магнитов различной формы (полосовых, подковообразных, магнитных стрелок). К мягким магнитным материалам, обладающим малой коэрцитивной силой и узкой петлей гистерезиса, относятся железо, сплавы железа с никелем. Эти материалы используются для изготовления сердечников трансформаторов, генераторов и других устройств, по условиям работы которых происходит перемагничивание в переменных магнитных полях. Перемагничивание ферромагнетика связано с поворотом областей самопроизвольного намагничивания. Работа, необходимая для этого, совершается за счет энергии внешнего магнитного поля. Количество теплоты, выделяющейся при перемагничивании, пропорционально площади петли гистерезиса.

В отличие от тел парамагнитных и диамагнитных для ферромагнетиков магнитная проницаемость μ не остается постоянной, а зависит от напряженности внешнего намагничивающего поля Н . Эта зависимость для магнитного сплава (пермаллоя) и для мягкого железа показана на рис.3. Как мы видим, магнитная проницаемость имеет малые начальные значения в слабых полях, затем нарастает до максимального значения и при дальнейшем увеличении поля в катушке снова уменьшается.

К характерным особенностям ферромагнетиков также относят явление магнитострикции - искажения внешней формы ферромагнетика при его намагничивании. Связанная с таким искажением относительная деформация l / l обычно очень мала — по порядку величины она составляет 10-5 -10-6 , поэтому обнаружить ее можно лишь точными измерениями. Однако, несмотря на столь незначительное изменение размеров за счет магнитострикции, это явление оказывается существенным при рассмотрении доменной структуры и механизма намагничивания; кроме того, оно имеет множество практических применений.

Важно отметить, что при достижении определенной температуры магнитная проницаемость ферромагнитных тел резко падает до значения, близкого к 1 . Эта температура, характерная для каждого ферромагнитного вещества, носит название точки Кюри. (Речь идет не о том нагревании под действием вихревых токов Фуко, которое испытывают все металлы, помещенные в переменное магнитное поле, но о нагревании ферромагнитных тел, обусловленном их перемагничиванием и связанном со своеобразным внутренним трением в перемагничиваемом веществе.) При температурах выше точки Кюри все ферромагнитные тела становятся парамагнитными. У железа точка Кюри равна 767°С, у никеля 360°С, у кобальта около 1130°С. У некоторых ферромагнитных сплавов точка Кюри лежит вблизи 100°С.

Рис. 3. Зависимость μ от Н у магнитного сплава пермаллоя (1) и у мягкого железа (2)

В последнее время большое значение приобрели полупроводниковые ферромагнетики—ферриты, химические соединения типа MeO*Fe2 O3 , где Me—ион двухвалентного металла (Мn, Со, Ni, Сu, Mg, Zn, Cd, Fe). Они отличаются заметными ферромагнитными свойствами и большим удельным электрическим сопротивлением (в миллиарды раз большим, чем у металлов). Ферриты применяются для изготовления постоянных магнитов, ферритовых антенн, сердечников радиочастотных контуров, элементов оперативной памяти в вычислительной технике, для покрытия пленок в магнитофонах и видеомагнитофонах и т. д.

§ 3 МАГНИТНЫЕ И МЕХАНИЧЕСКИЕ СВОЙСТВА ЖЕЛЕЗОНИКЕЛЕВЫХ СПЛАВОВ

Физические свойства железоникелевых сплавов начали изучаться еще в середине прошлого века. Вначале были исследованы магнитные свойства, причем максимальное внимание уделялось сплавам инварной (29-45% Ni) и пермаллойной (70-80% Ni) областей, что объясняется широким применением этих сплавов в вакуумной технике, электротехнике и радиотехнике. После получения в 1910 г. концентрационной кривой магнитной индукции насыщения исследователи, отвечая на запросы практики, выявили интересные свойства пермаллойных сплавов. Например, повышение максимальной проницаемости до 25·104 гс/э испытывают сплавы с содержанием 65-70% никеля после прохождения так называемой термомагнитной обработки. Была обнаружена также зависимость начальной и максимальной проницаемостей от специальной термической (пермаллойной) обработки сплавов с 50-80% Ni.Среди них особенно выделяется сплав с 78% Ni, у которого начальная проницаемость возрастает от 2000 до 9000. Одна из причин особенных свойств 78-пермаллоя заключается в том, что у него константа магнитной анизотропии и константы магнитострикции близки к нулю, поэтому процесс намагничивания как смещением границ доменов, так и вращением векторов спонтанной намагниченности происходит с малой затратой энергии.

Магнитострикция насыщения λ бинарных Fe - Niсплавов подробно исследована рядом авторов. Оказалось, что сплавам с содержанием никеля около 5, 30 и 81% соответствует нулевое значение λ (рис.4). Отсутствие магнитострикции для сплава с 30% Niсвязано, вероятно, с тем, что он при комнатной температуре может быть неферромагнитен .

Лихтенбергер произвел измерение констант магнитострикции λ100 , λ111110 монокристаллах Fe-Niв области концентраций 30-100% никеля (рис.5). Видно, что для сплавов с 60% и 85% никеля все константы равны (сплавы указанных составов обладают изотропной магнитострикцией), а в интервале 30-45% Niконстанты магнитострикции имеют противоположные знаки (λ100 <0 λ111 >0, λ110 >0). Существует узкая область сплавов (от 80% до 85% Ni), в пределах которой константы магнитострикции проходят через нуль и также имеют противоположные знаки.

Явление магнитострикции возникает за счет изменения магнитного взаимодействия атомов ферромагнитного вещества при переориентации векторов самопроизвольной намагниченности Js доменов во внешнем магнитном поле. В связи с тем, что переориентацию могут вызвать и упругие механические напряжения, в сплавах при их деформации наблюдается механострикция, приводящая к отклонению от закона Гука. С явлением механострикции непосредственно связано явление увеличения под влиянием магнитного поля модуля упругости E Fe-Niсплавов (ΔΕ -эффект).

В середине прошлого столетия был открыт так называемый магнитоупругий эффект, который состоит в том, что при деформации ферромагнитных тел наблюдается изменение их намагниченности. Согласно теории при действии на ферромагнетик упругих напряжений изменяется ориентация векторов Js доменов, на характер которой существенное влияние оказывает знак магнитострикции. Например, никель (λ < 0) при растяжении имеет меньшую намагниченность, чем в ненагруженном состоянии, а в ферромагнетиках с λ > 0 растяжение приводит к возникновению петли гистерезиса намагниченности прямоугольного вида.

Рис.4. Концентрационные кривые магнитострикции насыщения и константы магнитной анизотропии К поликристаллических сплавов системы железо - никель

Рис. 5. Магнитострикция монокристаллов железоникелевых сплавов

Магнитоупругий эффект в области парапроцесса (ΔJs-эффект) при односторонней деформации растяжения (механопарапроцесс) исследован Беловым. Помимо других поправок им было учтено также изменение намагниченности за счет уменьшения площади поперечного сечения образца при растяжении. Наиболее сильно в системе железо-никель ΔJS -эффект проявляется в инварных сплавах, линейно возрастая с увеличением растягивающей нагрузки. Например, относительное возрастание истинной намагниченности при действии нагрузок в 5 кг/мм на сплав 36% Ni- 64% Fе при температуре жидкого азота достигает 0,035%, при комнатных температурах - 0,13%, в области точки Кюри — 1, 2%. С позиций квантовомеханической теории ферромагнетизма этот факт объясняется сильной зависимостью обменного взаимодействия между спинами электронов соседних атомов от межатомных расстояний. При упругом растяжении даже небольшие изменения межатомных расстояний приводят к значительному усилению обменного взаимодействия, ответственного за ферромагнетизм, что и дает увеличение истинной намагниченности. Величину ΔJs-эффекта в области парапроцесса трудно подсчитать, даже если одновременно привлечь зонную и квантовомеханическую теории ферромагнетизма.

Инварные сплавы Fe-Ni обладают и другими интересными физическими свойствами. Так, сплав с γ-решеткой, содержащей 36% никеля, имеет минимальное значение коэффициента линейного расширения. Благодаря этому свойству, этот сплав применяют при изготовлении деталей точных измерительных приборов ив различных конструкциях с вакуумноплотными спаями. Шевенар впервые высказал догадку, что аномалия теплового расширения инвара имеет чисто ферромагнитную природу: при нагревании происходит магнитное превращение, которому сопутствует объемное изменение, компенсирующее обычное термическое расширение тела.

В инварной области наблюдается ухудшение упругих свойств, что, вероятно, обусловлено максимальным значением параметра кристаллической решетки (рис. 4). Исследование температурной зависимости модуля упругости инварного сплава с 42% Niпоказало, что возрастание модуля упругости с повышением температуры до точки Кюри (характерное для многих ферромагнетиков) сохраняется и в намагниченных до насыщения образцах (рис. 7), тогда как у неинварных сплавов в полях насыщения эта аномалия снимается [12]. Положительный знак температурного коэффициента модуля упругости в полях технического насыщения наблюдается в области 29-45% никеля (рис. 6); аномалия исчезает лишь при температурах выше точки Кюри [64]. Если аномалия температурной зависимости модуля Юнга у обычных ферромагнитных металлов и сплавов определяется в основном тем, что под воздействием внешних напряжений происходит переориентация векторов спонтанной намагниченности, то у инварных сплавов большую роль играет еще и вторая причина - изменение самой величины истинной намагниченности под действием напряжений (ΔJs-эффект), которое и обусловливает специфические температурные особенности поведения модуля упругости.

С явлением ΔJs-эффекта тесно связано явление смещения точки Кюри ферромагнетика под действием упругих напряжений, обнаруженное Беловым [65] в инварных железоникелевых сплавах. Ферромагнетизм у сплавов инварной области обусловлен обменным взаимодействием атомов не только первой координационной сферы, но и последующих. Подтверждением этому является тот факт, что ферромагнитное превращение инваров чрезвычайно размыто по температурному интервалу. Возможно, что упругие напряжения меняют параметры первой и последующих координационных сфер, а это, в свою очередь, вызывает изменение обменного взаимодействия. Если намагниченность возрастает, то это приводит к смещению точки магнитного превращения в сторону более высоких температур [12, 65].

Рис. 6. а) модуль нормальной упругости и б) кривые температурного коэффициента модуля нормальной упругости (1 ) и параметра кристаллической решетки ( 2 ) сплавов системы железо - никель


Парапроцесс, как и процессы смещения границ доменов и вращения векторов Jsдоменов во внешнем магнитном поле, сопровождается магнитострикцией, которая изменяет, в основном, объем ферромагнетика. В системе железо-никель максимальное значение объемной магнитострикции парапроцесса также приходится на инварные сплавы. В сущности, это термодинамическое следствие того, что в инварах обменная энергия сильно зависит от межатомных расстояний. Поэтому не случайно Деринг связывал аномалию температурного коэффициента модуля упругости инваров с аномалией объемной магнитострикции в области парапроцесса.

На инварные сплавы железо-никель приходится также максимум электросопротивления и минимум теплопроводности.

В настоящее время существует несколько точек зрения на природу инварных аномалий в железоникелевых сплавах, каждая из которых, хорошо согласуясь с частью наблюдаемых инварных эффектов, не в состоянии охватить проблему в целом. Это работы Белова К. П., Кондорского E. И., Вейса , Сидорова С. К. и др., Шаги и др.

Идея Кондорского о том, что особенности инварных аномалий связаны с отрицательным обменным взаимодействием атомов γ-фазы железа была подтверждена при квантовомеханическом рассмотрении проблемы и широкими экспериментальными исследованиями. Рассматривая работы по принципу подхода в них к электронной структуре атомов в инварных сплавах Fе- Ni, можно сделать вывод, что все инварные аномалии не могут быть объяснены в настоящее время ни с точки зрения коллективизированых, ни с точки зрения локализованных 3d-электронов.

Рис. 7. Температурная зависимость модуля упругости:

а) сплава Fe - 42 % N i в магнитных полях: 1 - О; 2 - 40;

3 - 575 эрстед

б) чистого никеля в магнитных полях: 1-575; 2 -106;

3-41; 4 - 10; 5 - 6; 6 - 0 эрстед

К-во Просмотров: 324
Бесплатно скачать Дипломная работа: Полное магнетосопротивление ферромагнетиков