Дипломная работа: Потужне інверторне джерело живлення

Таблиця 5.2 – Значення коефіцієнта А2 .

Tср, о С 0 10 20 30 40 50 80 100 120 140 150
А2 1,42 1,42 1,42 1,42 1,42 1,42 1,42 1,42 1,42 1,42 1,42

5.1.2 Випромінювання

Закон передачі енергії випромінюванням схожий на закон конвекції:

(5.7)

де аi — коефіцієнт теплообміну випромінюванням.

- приведений ступінь чорноти поверхні випромінювання;

- коефіцієнт опроміненості;

Коефіцієнт опроміненості показує, яка частина енергії, що випромінює радіатором, потрапляє в навколишнє середовище.

— перехідна температурна функція, визначувана різницею температур середи і радіатора. Ступінь чорноти різних поверхонь позначений у табл. 5.3.

Таблица 5.3– Ступінь чорноти різних поверхонь.

Матеріал
Алюміній з полірованою поверхнею 0,04...0,05
алюміній 0,20...0,31
Силуміновоє, що Окислює, литво 0,31...0,33
Чорнений анодований сплав 0,85...0,9
Латунь окислює 0,22
Фарби матові темних кольорів 0,92...0,95
Лак чорний матовий 0,95...0,98

В разі ребристого радіатора = 0.75...0,8.

Перехiдна функцiя f(Ta ,Ts ) може бути визначена з вираже­ня:

(5.8)

Размiрность значеньфункцiї— Вт/(м2 °С).


5.1.3 Кондукція

Поширення тепла через електроізоляційну підкладку, яка застосовується для ізоляції радіатора від електричних ланцюгів — типовий випадок кондукциі. Товщинапідкладкимала в порівнянні з висотою і шириною, тому весь тепловий потік проходить через прокладку повністю, не розсіваючись на її бічних гранях. Якщо бічні грані також починають розсіювати тепло, про кондуктівнийтеплообмін говорити вже не можна. Інколи як охолоджувачі використовують не спеціально розроблені радіатори, а стінки корпусу приладу. Наприклад, в модульних джерелах живлення корпус одночасно служить радіатором — його у ряді випадків ребрять і фарбують в чорний колір. Внутрішній простір заповнюється теплопроводящим компаундом, що забезпечує, до всього іншого, і механічну стійкість до удару.

У теплових розрахунках охолоджувачів потрібно враховувати всітри складові теплообміну, проте при розрахунку теплообмінних процесів між радіатором і навколишнім середовищем можна нехтувати кондуктівноюскладовою, оскільки вона вносить свій істотний вклад лише при передачі тепла від корпусу елементу до радіатора через електроізоляційну підкладку. Насправді розміри радіатора впливають на розподіл поверхневої температури: найбільш віддалені ділянки прогріваються гірше. Врахувати цю обставину можна введенням коефіцієнта неравномерності прогрівання радіатора – g.

Коефіцієнт неравномерності прогрівання визначається виходячи з максимального лінійного розміру радіатора. На рис.5.1 показана залежність коефіцієнта неравномерності прогрівання для ребреного радіатора.


Рисунок 5.1 – . Графік неравномерності прогрівання ребреного радіатора

Методика розрахунку ребреного радіатора з примусовим охолоджуванням в загальному вигляді:

1) обчислюємо теплові втрати Рп напівпровідникового приладу (Pn =I1 ·0,5);

задаємося максимальною робочою температурою середи і за довідковими даними визначаємо температуру кристаллаТа задаємося максимальною робочою температурою середи і за довідковими даними визначаємо температуру кристала ;

3) по довіднику визначаємо повний тепловий опір радіатора Rt ;

4) задаємося висотою пластини і визначаємокоефіцієнт неравномерності прогрівання g за даними рис. 5.1; вибираємо охолоджуючий вентилятор; визначаємо температуру радіатора Тs :

5) обчислюємо коефіцієнт теплообміну випромінюванням і конвекцією;

5) визначаємо площутеплоотводящей поверхні радіатора заформулою:

5.2 Р озрахунок системи охолоджування

Розрахуноксистеми охолоджування для чопперного стабілізатора реализованного на VT4 и D5 :

1) Pn =I1 ·0,5=42,8·0,5=21,4 (Вт)

2) Ta =20 o C;

К-во Просмотров: 350
Бесплатно скачать Дипломная работа: Потужне інверторне джерело живлення