Дипломная работа: Продвижение прогрессивных систем энергосбережения в Украине в сегменте (ТН) тепловых насосов

Испаритель – пластинчатый теплообменник, где с одной стороны циркулирует холодный жидкий хладагент (вещество с низкой температурой кипения, обычно фреон), а с другой сторо-ны на противотоке циркулирует рабочее вещество первичного контура.

Первичный контур – это контур с низкопотенциальной тепловой энергией (энергия, температуры которой недостаточно для непосредственного нагрева отопительного контура). В качестве источника энергии первичного контура может быть использовано тепло грунта (грунтовые зонды с антифризом), грунтовых вод (две скважины: подающая и поглощающая), наружного воздуха и т.п.

В испарителе хладагент забирает тепло первичного контура, закипает и испаряется. Соответственно понижается температура выхода первичного контура.

Компрессор всасывает газообразный хладагент, сжимает его, резко повышая таким образом его температуру. Горячий газообразный хладагент выталкивается в конденсатор.

Конденсатор - по устройству такой же теплообменник, как и испаритель, где со стороны рабочего контура циркулирует горячий хладагент, а со стороны вторичного контура – вода или антифриз.

Горячий хладагент, вступая в тепловой контакт с теплоносителем системы отопления или водой из системы горячего водоснабжения (ГВС), конденсируется, передавая свое тепло системе отопления или ГВС. При этом жидкий фреон стекает на дно конденсатора, откуда за счет перепада давлений продавливается через сбросной клапан в испаритель. Температура его при этом резко понижается. После этого рабочий цикл начинается сначала.

Наиболее широкое применение тепловой насос нашёл в домашнем теплоснабжении и кондиционировании воздуха, в особенности, в США, где требуется круглогодичное кондицио-нирование: охлаждение в летние месяцы и нагрев в зимние. Реверсивный тепловой насос, реша-ющий обе задачи, выпускается уже более 30 лет, он экономичен и надежен.

По данным на 1997 год из 90 миллионов тепловых насосов, установленных в мире, 4,28 миллиона аппаратов смонтировано в Европе. Немного, по сравнению с 57 миллионами систем, имеющимися в Японии, где такое оборудование является основным в обеспечении отопления жилого фонда [26].

В Соединенных Штатах насчитывается 13,5 миллионов установленных агрегатов, а еще только развивающийся китайский рынок достиг уровня 10 миллионов систем.

Использованию ТН в мире уделяется серьезное внимание как весьма перспективному энергосберегающему направлению. Однако решение вопросов эффективности, выбора типа ТН, масштабов и областей их оптимального использования в разных странах различается и является далеко не однозначным.

Например, в Европе 77% установленных тепловых насосов используют наружный воз-дух в качестве источника тепла, хотя в Швеции, Швейцарии и Австрии преобладают тепловые насосы, забирающие тепло из грунта.

В Норвегии на конец 1999 года насчитывалось в эксплуатации 27 200 теплонасосных установок. Из вновь установленных в стране в 1999 году теплонасосных установок 67% исполь-зовали в качестве источника тепла окружающий воздух, 12% – отработавший воздух, 19% – во-ду и грунт [26].

По прогнозам мирового энергетического комитета (МИРЭК) к 2020 году в развитых странах 75% систем отопления и горячего водоснабжения будет использовать тепловые насосы. Следует отметить, что ни в одной стране фирмы-изготовители тепловых насосов не входят в рынок без специальной государственной поддержки, которая имеет разные формы льгот (нало-говые, кредитные и т.д.), которые постепенно уменьшаются по мере развития отрасли. Успехи в развитии техники теплонасосного отопления за рубежом обнадеживают отечественных энтузи-астов этого направления и сулят благоприятные перспективы [18].

Основное отличие теплового насоса от других генераторов тепловой энергии, например, электрических, газовых или дизельных котлов, заключается в том, что при производстве тепла 75% энергии берется из окружающей среды, а остальные 25% - это электрическая энергия, не-обходимая для работы компрессора теплового насоса. Тепловой насос "выкачивает" солнечную энергию, накопленную за теплое время года в окружающей среде. То есть для производства 4 кВт тепловой энергии Вам необходимо затратить всего лишь 1 кВт энергии электрической -налицосущественная экономия на оплате электроэнергии.

Соотношение вырабатываемой тепловой энергии и потребляемой электрической энергии называется коэффициентом трансформации (или КПД теплового насоса), и служит показателем эффективности его работы. Современные тепловые насосы компании Viessmann имеют высо-кий коэффициент трансформации - от 2 до 7 в зависимости от используемого источника тепло-вой энергии и применяемой системы отопления. Чем меньше разница температур между при-родным источником тепловой энергии и подачей отопительного контура, тем коэффициент трансформации больше. Это фактически означает, что 60-75% потребностей здания в тепло-снабжении тепловой насос обеспечивает бесплатно, и тепло обойдется Вам в среднем в 4,5 раза дешевле, чем при использовании электрических обогревателей.

За последние годы количество новых инсталлированных тепловых насосов (ТН) с элек-трическим приводом возрастало весьма и весьма динамично. С одной стороны, это обусловлено тем, что ТН (тепловой насос) особенно хорошо выполняет требования законодательства по энергосберегающей технике, и, с другой стороны, тем, что с точки зрения комфорта и эксплуа-тационных расходов ТН (теплового насоса)обладает существенными преимуществами в сравне-нии с обычными системами отопления.

Рис.1.3. Структура бытового теплопотребления населения [18]

В суммарном энергопотреблении для жилых домов доля тепловой энергии играет решающую роль: 86 % потребности в энергии частных домашних хозяйств приходится на отопление и приготовление горячей расходной воды и покрывается большей частью за счёт газа и нефти. Так как наличие этих ископаемых энергоносителей ограничено во времени, то требуются альтернативные источники энергии. В этой связи регенеративные, или возобновляемые энергии – в частности ТН (тепловой насос) – сыграют в будущем важнейшую роль. И особенно потому, что в наших широтах для них совпадают предложение и спрос, что лишь с большими оговорками можно сказать об использовании солнечной энергии.

Назначение теплового насоса - точно так же, как вода не течёт вверх, тепло всегда пере-текает только от горячего (источник тепла) к холодному (приёмник тепла). Таким образом, что-бы использовать для отопления и ГВС низкопотенциальное тепло из окружающей среды, т.е. из грунта, воздуха или из грунтовых вод, необходимо это тепло "перекачать" на более высокий уровень. Контур хладагента позволяет "качать" тепло на более высокий температурный уро-вень. Сердцем ТН (теплового насоса) является циркуляционный контур хладагента, работаю-щий с помощью компрессора. По принципу конструкции он идентичен контуру хладагента холодильников, испытанных временем и практикой использования, и поэтому также сопос-тавим с ними по показателю высокой надёжности. Лишь выполняемая задача у него полностью противоположна, а именно: внутри холодильника тепло отбирается у охлаждаемых продуктов и отдаётся с тыльной стороны аппарата в помещение, а ТН (тепловой насос) отбирает тепло из окружающей среды (воды, земли, воздуха) и передаёт его в отопительную систему.

Принцип функционирования теплового насоса приведен на рис.1.4

Рис.1.3. Принципиальная тепловая схема работы теплового насоса [29]

В закрытом контуре происходит поочерёдное испарение, сжатие, конденсация (сжижение) и расширение рабочего вещества – хладагента, закипающего уже при невысоко

К-во Просмотров: 203
Бесплатно скачать Дипломная работа: Продвижение прогрессивных систем энергосбережения в Украине в сегменте (ТН) тепловых насосов