Дипломная работа: Проектирование обогатительной фабрики
Почти во всех кимберлитах широким распространением пользуются оливин, ильменит, магнетит и в большинстве трубок – пироп. Этими минералами в основном сложена тяжелая фракция кимберлитов. Такие минералы как, хромдиопсид, энстатит, хромит, апатит, циркон, роговая обманка, перовскит и другие, встречаются обычно или в единичных зернах или входят в заметных количествах в состав некоторых ксенолитов. Карбонаты, главным образом кальцит, выделяется в трещинах и пустотах кимберлита, часто в ассоциации с пиритом, реже с кварцем, а в некоторых трубках с битумом. Флогопит повсюду в большей или меньшей степени подвержен процессу хлоритизации. Гидроокислы железа встречаются в виде локальных участков в верхних горизонтах всех трубок, окрашивая иногда участки пород в буровато-красные и бурые цвета. Содержание в породе разрушенных пород и охристо-глинистых минералов, образующих при измельчении большое количество первичных и вторичных шламов, осложняя процесс обогащения, варьирует в значительных пределах. Это пределы характеризуется количеством минералов, подверженных вторичным изменениям (серпинтизации, хлоритизации, карбонатизации), в результате чего увеличивается разрушающая способность.
Количество граната в трубке повышено (среднее 0,51 %). Преобладает магнезиальная разновидность с высоким (50 — 70 %) содержанием пиропового компонента. Эклогитовые гранаты в кимберлитовом цементе составляют не более 5-7% всей выборки. Среднее содержание Сг2 О3 в гранате представительной выборки (несколько сотен зерен) варьирует от 3,07 до 5,10 %, предельные значения в отдельных зернах граната — от 0,5 до 11,0 %. Довольно часто встречаются гранаты уваровит-пиропового состава; количество этого минерала алмазной ассоциации составляет 3,8 %.
Содержание пикроильменита в трубке также повышено (0,75 %). Состав минерала варьирует в широких пределах — изменяются концентрации титана, магния, железа и хрома.
Малое содержание в руде кальция, шеелита, циркона и других минералов, люминесцирующих наряду с алмазами, позволяет благополучно применять люминесцентные сепараторы, тогда как повышенное содержание их увеличивает выход концентрата, снижая его качество.
Среднее содержание тяжелой фракции с удельным весом более 3,2 в кимберлитовой брекчии составляет 1-3%, т.е. материал легко обогащается гравитационными методами (отсадка, винтовая сепарация и тяжелосредная сепарация).
1.3 Гранулометрический состав
Гранулометрический состав характеризуется количественным распределением зерен полезного ископаемого по крупности, и играет немаловажную роль при выборе схем дробления, измельчения и грохочения.
По гранулометрии алмазов основная масса (51,0-70,9 %), представлена мелкими кристаллами класса -1+0,5 мм. На долю алмазов класса -2+1 мм приходится 1/4-2/5 от общего количества кристаллов. Крупные камни класса -4+2 мм составляют 2,01-9,6 % от общего количества всех алмазов. По массе алмазов наиболее продуктивными являются классы -2+1 мм (30,02-50,7 %) и -4+2 мм (23,3-52,6 %), а наиболее крупные камни класса -8+4 мм составляют 10,45-27,26 % от общей массы. На долю более мелких, резко преобладающих по количеству, кристаллов класса -1+0,5 мм приходится лишь 7,33-12,6 % от общей массы всех алмазов.
Гранулометрическая характеристика исходного сырья представлена в таблице 1.
Таблица 1.1 - Гранулометрическая характеристика руды трубки "Нюрбинская".
Класс крупности, мм |
-1200 +1000 |
-1000 +800 |
-800 +600 |
-600 +400 |
-400 +200 |
-200 +100 |
-100 +50 |
-50 +20 |
Выход классов, % |
К-во Просмотров: 810
Бесплатно скачать Дипломная работа: Проектирование обогатительной фабрики
|