Дипломная работа: Программно методический комплекс для обучения процессу создания компиляторов
Данные таблицы могут выглядеть следующим образом:
Таблица 2 – Таблица символических имен
№ п.п. | Идентификатор | Тип | Размер, занимаемый в памяти, байт | Относительный адрес в памяти |
1 | I | INTEGER | ||
2 | Y | REAL | ||
3 | X1 | REAL | ||
… |
Таблица 3 – Таблица литералов
№ п.п. | Литерал | Тип | Размер, занимаемый в памяти, байт | Относительный адрес в памяти |
1 | 1 | INTEGER | 2 | 0 |
2 | 100 | INTEGER | 2 | 2 |
… |
Результатом работы сканера является последовательность кодов лексем. Каждый код лексемы обычно представляется кодом таблицы и спецификатором (порядковый номер в таблице, куда занесена лексема). Это позволяет избежать дополнительного поиска по таблицам на следующих этапах трансляции. Например в результате обработки сканером следующего предложения языка Паскаль
FORI:=1 TO 100 DOY:=X1
будет получена строка:
<1,06><2,1><1,14><3,1><1,07><3,2><1,08><2,2><1,14><2,3>,
где в угловых скобках пара чисел задает код таблицы и спецификатор. Можно оформить и в виде таблицы.
Таблица 4 – Таблица выходных символов
№ п.п. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Таблица | 1 | 2 | 1 | 3 | 1 | 3 | 1 | 2 | 1 | 2 |
Строка | 6 | 1 | 14 | 1 | 7 | 2 | 8 | 2 | 14 | 3 |
Функционально в сканере могут быть выделены следующие модули[4]:
1) выделение из входной строки очередного слова;
2) поиск в таблицах лексем и определение кода лексемы;
3) формирование и вывод выходной строки.
Для модуля выделения слова важна информация о том, какие символы могут быть признаками начала или конца слова. Например, в языке Паскаль ключевые слова отделяются от других элементов предложения пробелами. Сложнее обстоит дело с выделением идентификаторов и чисел, поскольку разделителем для них может служить любой другой символ, не входящий по определению в идентификатор или число.
При заполнении таблиц выполняется проверка на наличие в ней элемента, совпадающего с выделенным идентификатором или константой, и при совпадении занесение в таблицу не выполняется.
В задачи последнего модуля входит занесение в выходную строку кодов лексем.
В дополнение к своей основной функции, распознаванию лексем, сканер обычно также выполняет чтение строк исходной программы и, возможно, печать листинга исходной программы. Комментарии игнорируются сканером, за исключением того случая, когда они должны быть напечатаны и, таким образом, эффективно удаляются из исходной программы до начала процесса грамматического разбора.
Следующей стадией анализа является синтаксический разбор.
Лексический и синтаксический анализаторы взаимодействуют между собой. Существует два основных способа взаимодействия:
1) реализуется на основе прямого лексического анализа. От синтаксического анализатора поступает запрос «дать лексему» и указывается тип лексемы;
2) непрямой лексический анализ. Синтаксический анализатор выдает запрос «дать лексему», тип лексемы не указывается. Нет решающего блока, считаем, что работает группа параллельных автоматов.
1.4 Синтаксический и семантический анализ
Синтаксический анализ - это процесс, в котором исследуется цепочка лексем и устанавливается, удовлетворяет ли она структурным условиям, явно сформулированным в определении синтаксиса языка. Это – самая сложная часть компилятора.
Синтаксический анализатор расчленяет исходную программу на составные части, формирует ее внутреннее представление, заносит информацию в таблицу символов и другие таблицы. При этом производится полный синтаксический и, по возможности, семантический контроль программы. Фактически, это - синтаксически управляемая программа. При этом обычно стремятся отделить синтаксис от семантики насколько это возможно - когда синтаксический анализатор распознает конструкцию исходного языка, он вызывает семантическую процедуру, которая контролирует эту конструкцию, заносит информацию куда надо, проверяет на дублирование описания переменных, проверяет соответствие типов и т.п.
Процесс синтаксического анализа может рассматриваться как построение дерева грамматического разбора для транслируемых предложений. Грамматики могут использоваться как для порождения так и для распознавания предложений языка. Порождение начинается с начального понятия (или аксиомы грамматики). При распознавании с помощью грамматических правил порождается предложение, которое затем сравнивается с входной строкой. При этом применение правил подстановки для порождения очередного символа предложения зависит от результатов сравнения предыдущих символов с соответствующими символами входной строки. Результат анализа исходного предложения в терминах грамматических конструкций удобно представлять в виде дерева. Такие деревья обычно называются деревьями грамматического разбора или синтаксическими деревьями. На рисунке 3 изображено дерево грамматического разбора для предложения READ (VALUE).
??????? 3 ? ?????? ??????????????? ???????
Методы грамматического разбора разбиваются на два больших класса восходящие и нисходящие – в соответствии с порядком построения дерева грамматического разбора. Нисходящие (методы сверху-вниз) начинаются с аксиомы грамматики, с корня дерева и пытаются так его наращивать, чтобы последующие узлы дерева соответствовали синтаксису анализируемого выражения. Восходящие (методы снизу-вверх) начинают с элементов предложения (с "листьев") и отыскивают в грамматике какому понятию они соответствуют, т.е. определяют родительскую вершину для этих элементов, и т.д. пока не приходят к корню дерева (аксиоме грамматики). В современных компиляторах применяются как нисходящие, так и восходящие методы.
Достоинством восходящего метода является его несомненная простота, а также высокая скорость выполнения (не тратится время на поиск правила редукции).
Однако все эти достоинства напрочь меркнут перед главным недостатком данного метода. Дело в том, что здесь практически отсутствует какая бы то ни была диагностика (и тем более - локализация) ошибок. Во вторых, некоторые ошибки в исходном выражении не диагностируются вовсе. Например, выражения, в которых встречаются идущие подряд скобки “(” и “)”.
Поэтому при дальнейшем рассмотрении будет рассматриваться нисходящий разбор, как наиболее пригодный метод при ручном написании компилятора [4].
Кроме этого, алгоритмы синтаксического (грамматического) разбора (контроля) делят на синтаксически-ориентированные и синтаксически-неориентированные. Синтаксически-ориентированные алгоритмы являются универсальными для некоторого семейства языков и переход к распознаванию предложений другого языка выполняется путем смены грамматики, т.е. грамматика выполняет роль некоей "программы" распознавания предложений языка. Главным достоинством этого класса алгоритмов является их универсальность, а недостатком - наличие избыточности вследствие ориентации на семейство языков.