Дипломная работа: Размерность конечных упорядоченных множеств

Выполнила студентка V курса

математического факультета

Артемьева Е.П.

/подпись/

Научный руководитель:

доктор ф.-м. наук, профессор

Вечтомов Е.М.

/подпись/

Рецензент:

кандидат ф.-м. наук, доцент

Чермных В.В.

/подпись/

Допущен к защите в ГАК

Зав. кафедрой Вечтомов Е.М.

(подпись)

2003г.

Декан факультета Варанкина В.И.

(подпись)

2003г.

Киров, 2003г.

Содержание

Введение. 3

§1.Основные понятия. 4

§2.Определение размерности упорядоченного множества. 9

§3.Свойства размерности конечных упорядоченных множеств. 14

Литература. 22

Введение

Теория множеств служит фундаментом современной математики.

Порядковая структура входит в список основных (ещё алгебраическая и топологическая) математических структур, которые изучает теоретико-множественная математика.

При написании этой дипломной работы мы задавались целью – изучить порядковую структуру и элементы алгебраической теории решёток, сформировать углублённое представление о размерности упорядоченных множеств, познакомиться со свойствами размерности конечных упорядоченных множеств, сформулировать новые свойства и доказать их.

Язык упорядоченных множеств и решёток широко применяется в математике (алгебра, логика, теория множеств, общая топология, графы) и является основой одного из важнейших типов математического мышления.

Дипломная работа состоит из трёх параграфов: «Основные понятия», «Определение размерности упорядоченных множеств», «Свойства размерности конечных упорядоченных множеств».

В первом параграфе определяются основные понятия, с которыми нужно ознакомиться для дальнейшей работы и устанавливаются связи между ними. Большое число примеров позволяет достаточно глубоко понять суть рассматриваемых понятий.

Во втором параграфе рассматриваются только конечные множества. И особое внимание уделяется на линейный и нелинейный порядок. Формулируется и доказывается теорема об их связи. На основе этого появляется понятие размерности.

В третьем параграфе указаны 6 основных свойств размерности конечных упорядоченных множеств и приведены их доказательства. Некоторые из них оформлены в виде теорем.

§1.Основные понятия

Упорядоченным множеством называется пара <A, ≤ >, где А – непустое множество, а ≤ - бинарное отношение на А, называемое отношением порядка, которое (для "a,b,cÎA)

1. рефлексивно: а£а

2. транзитивно: а£в и в£с Þ а£с

3. антисимметрично: а£в и в£а Þ а=в

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 299
Бесплатно скачать Дипломная работа: Размерность конечных упорядоченных множеств