Дипломная работа: Разработка автоматического управления процесса сушки полидисперсных материалов во взвешенно-закрученном слое
Сушка широко применяется в химической, химико-фармацевтической, пищевой и других отраслях промышленности.
По своей физической сущности сушка является сложным диффузионным процессом, скорость которого определяется скоростью диффузии влаги из глубины высушиваемого материала в окружающую среду. Удаление влаги при сушке сводится к перемещению тепла и вещества (влаги) внутри материала и их переносу с поверхности материала в окружающую среду. Таким образом, процесс сушки является сочетанием связанных друг с другом процессов тепло- и массообмена (влагообмена).
Различают следующие способы подвода теплоты:
конвективную сушку, проводимую путем непосредственного контакта материала и сушильного агента. Подвод теплоты осуществляется газовой фазой (воздух или смесь воздуха с продуктами сгорания топлива), которая в процессе сушки охлаждается с увеличением своего влагосодержания;
контактную (кондуктивную) сушку, которая реализуется путем передачи теплоты от теплоносителя к материалу через разделяющую их стенку;
радиационную сушку, при которой тепло передается тонкому слою материала, либо поверхности его, покрытой лаками или красками, от электрических или газовых инфракрасных излучателей. Сушка протекает интенсивно. Сушилки отличаются малой инерционностью;
сублимационную сушку, при которой влага удаляется из материала в замороженном состоянии (обычно в вакууме). Чаще применяется в пищевой, чем в химической промышленности, с целью сохранения объёма, цвета, запаха, вкусовых и биологических свойств материала. Оборудование для этого метода сушки отличается сложностью;
диэлектрическую сушку, при которой материал высушивается в поле токов высокой частоты. Применяется для сушки древесины, пенопласта, искусственного волокна и т.д. Этот метод сушки отличается дороговизной.
Принципиальная схема сушильной установки
Принципиальная схема сушильной установки представлена на рис. 1.1
Высушиваемый материал поступает в сушилку 3, где его влажность снижается от ω1 (начальная) до ω2 (конечная). В сушилке материал либо находится в неподвижном состоянии (на противнях, вагонетках), либо движется (на транспортерных лентах, сетках, при помощи гребков, пересыпается при вращении сушилки). Сушка производится за счет тепла, вырабатываемого в генераторе тепла 2, куда теплоноситель может подаваться вентилятором 1. Генератором тепла могут служить паровые или газовые калориферы, топки, работающие на твердом, жидком или газообразном топливе, инфракрасные излучатели и генераторы электрического тока. Выбор генератора тепла обычно определяется схемой и методом сушки, физическими свойствами высушиваемого материала и требуемым режимом сушки. Иногда в сушильной камере устанавливается дополнительный подогреватель 2'.
Рисунок 1.1- Принципиальная схема сушильной установки
1- вентилятор; 2 - генератор тепла; 3 - сушилка;
4 - пылеулавливающее устройство; 5 - отсасывающее устройство.
Передача тепла высушиваемому материалу производится либо при непосредственном контакте последнего с теплоносителем, либо через обогреваемую поверхность, на которой находится материал. Поверхность теплообмена может обогреваться паром, дымовыми газами, горячей водой. Непосредственно материалу тепло передается либо от воздуха и дымовых газов, омывающих высушиваемый материал, либо от инертных газов и перегретого пара. Последний вид теплоносителя не получил широкого распространения в химической промышленности из-за сложности создания таких сушилок непрерывного действия. Тепло может передаваться материалу также от радиационных источников нагрева (при сушке тонких материалов), либо при помощи тока высокой или промышленной частоты (при сушке материалов сравнительно большой толщины).
Пары растворителя, выделяющиеся из материала, удаляются из сушилки при помощи отсасывающего устройства 5, которое представляет собой либо вентилятор в случае сушки воздухом или газом, либо конденсатор с вакуум-насосом, если необходимо создать вакуум в сушилке. При сушке воздухом и газами с отработанным теплоносителем уносится какое-то количество мелких частиц высушиваемого продукта. Для очистки газа, что необходимо как из санитарных, так и из экономических соображений, в сушильную установку входит пылеулавливающее устройство 4, представляющее собой циклон, скруббер либо рукавный фильтр.
1.2 Расчет сушильной установки
1.2.1 Материальный баланс сушильной установки
Обычно задается годовая производительность сушилки по готовому продукту. Тогда часовая производительность сушилки будет G2 (в кг/ч):
G2 = G/(ab)
где G-годовая производительность по готовому продукту, кг ; a – число часов работы сушилки в сутки; b – число рабочих дней в году; величины a и b зависят от характера производства; обычно для непрерывнодействующих производств принимают a = 22ч. b = 330 сут, иногда принимают 7000-8000 рабочих часов в году.
Если в процессе сушки происходят безвозвратные потери материала, часовую производительность рассчитывают с учетом этой поправки:
G'2 = G2/k
где k – коэффициент, учитывающий выход продукта; он должен составлять 0,95 - 0,99.
Количество удаляемой влаги W(b кг/ч) определяют из уравнения материального баланса
W = G2(w1-w2)/(1-w1),
где w1 и w2 - начальная и конечная влажность материала, масс. доли.
Тогда производительность сушилки по исходному материалу составит (в кг/ч)