Дипломная работа: Разработка автоматизированной системы для исследования устойчивости и автоколебаний в электромеханической следящей системе

К корректирующим средствам относятся, в частности, корректирующие звенья, представляющие собой динамические звенья с определенными передаточными функциями.

В тех случаях, когда корректирующие звенья используются именно для получения устойчивости системы регулирования или для повышения ее запаса устойчивости, они называются иногда демпфирующими или стабилизирующими звеньями. При этом имеется в виду, что звенья демпфируют колебания, которые возникают в системе регулирования. Термин «корректирующие звенья» является более широким и используется для звеньев, которые вводятся в систему для изменения статических и динамических свойств с различными целями.

Получение требуемого быстродействия обычно обеспечивается при проектировании системы регулирования посредством выбора соответствующих элементов цепи регулирования (исполнительных органов, усилителей, серводвигателей и т. п.). Однако возможно улучшение быстродействия системы посредством использования корректирующих средств.

До сих пор поведение систем автоматического регулирования исследовалось при определенных, заданных во времени задающих и возмущающих воздействиях (ступенчатая функция, импульсная функция, гармоническое воздействие и т. д.)

Однако во многих случаях характер воздействия бывает таким, что его нельзя считать определенной функцией времени. Оно может принимать с течением времени самые разнообразные случайные значения. В таких случаях можем оценить только вероятность появления той или иной формы воздействия в тот или иной момент времени.

Это происходит не потому, что оно неизвестно заранее, а потому, что сама природа реального задающего или возмущающего воздействия такова, что величина его в каждый момент времени, и процесс его изменения с течением времени, зависят от множества разнообразных величин, которые случайным образом могут комбинироваться друг с другом, появляться одновременно, или с любым сдвигом во времени и т.д.

Следящие системы – это системы, на вход которых попадают вместе с полезным сигналом, помехи. Например, в радиолокационной системе сопровождения отраженный от цели сигнал содержит в себе помехи в виде многочисленных флуктуации, происходящих от вибраций и поворотов цели, замирания сигнала и т. п.

Аналогичные помехи случайной природы имеют место в других автоматических устройствах.

В следящих системах не только возмущающие воздействия и помехи являются случайными, но и сам полезный сигнал, который должен воспроизводиться (задающее воздействие), как правило, носит случайный характер.

Система автоматического регулирования, которая содержит хотя бы одно звено, описываемое нелинейным уравнением, называется нелинейной.

Перечислим виды нелинейных звеньев:

1) звено релейного типа;

2) звено с кусочно-линейной характеристикой;

3) звено с криволинейной характеристикой любого очертания;

4) звено, уравнение которого содержит произведение переменных, их производных и другие их комбинации;

5) нелинейное звено с запаздыванием;

6) нелинейное импульсное звено;

7) логическое звено;

8) звенья, описываемые кусочно-линейными дифференциальными уравнениями, в том числе переменная структура.

Различают статические и динамические нелинейности. Первые представляются в виде нелинейных статических характеристик, а вторые – в виде нелинейных дифференциальных уравнений.

Общий метод составления уравнений для нелинейных систем состоит, в следующем. Сначала, производится линеаризация уравнений всех звеньев системы, для которых это допустимо, кроме существенно нелинейных звеньев (чаще всего одного-двух).

Затем составляются уравнения этих последних звеньев со всеми допустимыми упрощениями их характеристик.

В результате получается система обыкновенных линейных уравнений, к которым добавляется одно-два (иногда более) нелинейных. В соответствии с этим, обобщенную структурную схему любой нелинейной системы автоматического регулирования в случае одного нелинейного звена, можно представить в виде, где линейная часть может иметь структуру любой сложности (с обратными связями и т п.). В случае двух нелинейных звеньев могут быть разные комбинации, в зависимости от того, в какие цепи системы они входят.

Часто при исследовании нелинейных систем автоматического регулирования удается выделить нелинейность так, чтобы она описывалась непосредственно зависимостью между выходной и входной величинами и может иметь любую форму (релейного типа, кусочно-линейного или криволинейного). Но иногда, не удается этого сделать и приходится исследовать нелинейные дифференциальные зависимости.

Процессы в нелинейных системах автоматического регулирования имеют целый ряд весьма существенных особенностей, которые не встречаются в линейных системах. Благодаря этим существенным особенностям, даже вопрос об устойчивости системы становится здесь более сложным.

Кроме структуры системы и значений ее параметров для устойчивости того или иного установившегося процесса имеют значение здесь, в отличие от линейных систем, также и начальные условия. Возможен новый вид установившегося процесса – автоколебания, т. е. устойчивые собственные колебания с постоянной амплитудой при отсутствии внешних колебательных воздействий.

Когда в системе возникают автоколебания, то установившееся состояние, соответствующее постоянному значению регулируемой величины, часто становится невозможным. Следовательно, в общем случае на плоскости параметров системы могут быть не два вида областей (устойчивости и неустойчивости), как в линейных системах, а больше:

1) область устойчивости равновесного состояния с постоянным значением регулируемой величины;

2) область устойчивых автоколебаний;

К-во Просмотров: 229
Бесплатно скачать Дипломная работа: Разработка автоматизированной системы для исследования устойчивости и автоколебаний в электромеханической следящей системе