Дипломная работа: Разработка автомобильного стробоскопа
Рисунок 4.1 – Микроконтроллер Atmega16
4.3 Описание стабилизатора напряжения КР1158ЕН501А
Серия интегральных стабилизаторов фиксированного положительного напряжения КР1158ЕНхх, КФ1158ЕНхх с малым падением напряжения вход - выход охватывает диапазон выходных напряжений от 3 до 15В. Все стабилизаторы предназначены для широкой области применения и идеально подходят для нужд автомобильной электроники, так как имеют встроенную защиту от выбросов входного напряжения при сбросе нагрузки генератора до 60 В, защиту при подключении входного напряжения в обратной полярности и от перегрева ИС. Для ограничения рассеиваемой мощности введена блокировка выходного напряжения при входном напряжении более 30 В. Стабилизаторы не выходят из строя при кратковременном подключении выводов в зеркальной последовательности
При превышении режима по одному из параметров происходит срабатывание схем внутренней защиты микросхемы - стабилизатор выключается.
Таблица 4.2 – Параметры стабилизатора напряжения
Типономинал | Uo (В) | Iо(А) рабочий не более | Iomax(A) предельный не более | Тип корпуса |
КР1158ЕН501А | 5 | 0.15 | 0.7 | ТО-251 |
4.4 Описание микросхемы UC3843
Интегральная схема (ИС) UC3843 выпускается в корпусах SOIC-8 и SOIC-14, но в подавляющем большинстве случаев встречается ее модификация в корпусе DIP-8. На рисунке 4.3 представлена цоколевка.
Микросхема UC3843 предназначена для построения на ее основе стабилизированных импульсных источников питания (ИП) с широтно-импульсной модуляцией (ШИМ). Поскольку мощность выходного каскада ИС сравнительно невелика, а амплитуда выходного сигнала может достигать напряжения питания микросхемы, то в качестве ключа совместно с этой ИС применяется n-канальный МОП транзистор.
Рисунок 4.3 – Цоколевка микросхемы UC3842
Рассмотрим подробнее назначение выводов ИС для наиболее часто встречающегося восьмивыводного корпуса [7].
C omp (1) – этот вывод подключен к выходу усилителя ошибки компенсации. Для нормальной работы ИС необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС.
Vfb (2) – вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ИС. Результат сравнения модулирует скважность выходных импульсов, стабилизируя, таким образом, выходное напряжение ИП.
C/S (3) – сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора (КТ). При повышении тока через КТ (например, в случае перегрузки ИП) напряжение на этом резисторе увеличивается и, после достижения порогового значения, прекращает работу ИС и переводит КТ в закрытое состояние.
Rt/Ct (4) – вывод, предназначенный для подключения времязадающей RC -цепочки. Рабочая частота внутреннего генератора устанавливается подсоединением резистора R к опорному напряжению Vref и конденсатора С к общему выводу. Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием КТ, а снизу - мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц. Следует заметить, что в качестве времязадающего должен применяться конденсатор с возможно большим сопротивлением постоянному току.
Gnd (5) – общий вывод.
Out (6) – выход ИС, подключается к затвору КТ через резистор.
Vcc (7) – вход питания ИС. Рассматриваемая ИС имеет некоторые весьма существенные особенности, связанные с питанием.
Vref (8) – выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В.
Источник образцового напряжения используется для подключения к нему одного из плеч резистивного делителя, предназначенного для оперативной регулировки выходного напряжения ИП, а также для подключения времязадающего резистора.
ИС имеет некоторые особенности, связанные с ее питанием. Рассмотрим их подробнее. В первый момент после включения ИП в сеть внутренний генератор ИС еще не работает, и в этом режиме она потребляет от цепей питания очень маленький ток. Для питания ИС, находящейся в этом режиме, достаточно напряжения, получаемого с резистора R 2 и накопленного на конденсаторе C 5. Когда напряжение на этих конденсаторе достигает значения 7.8…9 В, запускается генератор ИС, и она начинает формировать на выходе импульсы управления КТ. На вторичных обмотках трансформатора Т V 1, в том числе и на обмотке 3-4, появляется напряжение. Это напряжение выпрямляется импульсным диодом V D 4, фильтруется конденсатором C 4, и через диод V D 5 подается в цепь питания ИС. В цепь питания включается стабилитрон V D 6, ограничивающий напряжение на уровне 14…16 В. После того, как ИС вошла в рабочий режим, она начинает отслеживать изменения своего питающего напряжения, которое через делитель R 5, R 8 подается на вход обратной связи Vfb . Стабилизируя собственное напряжение питания, ИС фактически стабилизирует и все остальные напряжения, снимаемые со вторичных обмоток импульсного трансформатора.
При замыканиях в цепях вторичных обмоток, например, в результате пробоя электролитических конденсаторов или диодов, резко возрастают потери энергии в импульсном трансформаторе. В результате напряжения, получаемого с обмотки 3-4, недостаточно для поддержания нормальной работы ИС. Внутренний генератор отключается, на выходе ИС появляется напряжение низкого уровня, переводящее КТ в закрытое состояние, и микросхема оказывается вновь в режиме низкого потребления энергии. Через некоторое время ее напряжение питания возрастает до уровня, достаточного для запуска внутреннего генератора, и процесс повторяется.
5. РАСЧЕТНАЯ ЧАСТЬ
Произведем расчет делителя напряжения по каналу измерения напряжения аккумуляторной батареи
Примем R 17 = 1 кОм, U вх max = 40 В, U в?