Дипломная работа: Разработка элективного курса "Основы искусственного интеллекта"

Совокупность фреймов, моделирующая какую-либо предметную область, пред­ставляет собой иерархическую структуру, в которую фреймы собираются с по­мощью родовидовых связей. На верхнем уровне иерархии находится фрейм, со­держащий наиболее общую информацию, истинную для всех остальных фреймов. Фреймы обладают способностью наследовать значения характеристик своих родителей, находящихся на более высоком уровне иерархии. Эти значения мо­гут передаваться по умолчанию фреймам, находящимся ниже них в иерархии, но если последние содержат собственные значения данных характеристик, то в качестве истинных принимаются именно они. Это обстоятельство позволяет без затруднений учитывать во фреймовых системах различного рода исключения.

Различают статические и динамические системы фреймов. В системах первого типа фреймы не могут быть изменены в процессе решения задачи, а в системах второго типа это допустимо.

О системах программирования, основанных на фреймах, говорят, что они явля­ются объектно-ориентированными. Каждый фрейм соответствует некоторому объекту предметной области, а слоты содержат описывающие этот объект данные, то есть в слотах находятся значения признаков объектов. Фрейм может быть представлен в виде списка свойств, а если использовать средства базы данных, то в виде записи.

Наиболее ярко достоинства фреймовых систем представления знаний проявля­ются в том случае, если родовидовые связи изменяются нечасто и предметная область насчитывает немного исключений. Во фреймовых системах данные о родовидовых связях хранятся явно, как и знания других типов. Значения слотов представляются в системе в единственном экземпляре, поскольку включаются только в один фрейм, описывающий наиболее общие понятия из всех тех, кото­рые содержит слот с данным именем. Такое свойство систем фреймов обеспечи­вает экономное размещение базы знаний в памяти компьютера. Еще одно досто­инство фреймов состоит в том, что значение любого слота может быть вычислено с помощью соответствующих процедур или найдено эвристическими методами. То есть фреймы позволяют манипулировать как декларативными, так и проце­дурными знаниями.

К недостаткам фреймовых систем относят их относительно высокую сложность, что проявляется в снижении скорости работы механизма вывода и увеличении трудоемкости внесения изменений в родовидовую иерархию. Поэтому большое внимание при разработке фреймовых систем уделяют наглядным способам ото­бражения и эффективным средствам редактирования фреймовых структур.

Семантические сети

Семантическая сеть описывает знания в виде сетевых структур. В качестве вер­шин сети выступают понятия, факты, объекты, события и т. п., а в качестве дуг сети — отношения, которыми вершины связаны между собой. Так, семантичес­кая сеть, представляющая знания об автомобиле гр. Васильева, показана на рис. П. 17.

Семантические сети часто рассматривают как общий формализм для представ­ления знаний. Частным случаем таких сетей являются сценарии, в которых в качестве отношений выступают каузальные отношения или отношения типа «цель — средство».

Вершины сети соединяются дугой, если соответствующие объекты предметной области находятся в каком-либо отношении. Самыми распространенными явля­ются следующие типы отношений:

БЫТЬ ЭЛЕМЕНТОМ КЛАССА (ЯВЛЯТЬСЯ) - означает, что объект входит в состав данного класса, например: ВАЗ 2106 является автомобилем;

ИМЕТЬ — позволяет задавать свойства объектов, например: жираф имеет длин­ную шею;

ЯВЛЯТЬСЯ СЛЕДСТВИЕМ — отражает причинно-следственные связи, напри­мер: астеническое состояние является следствием перенесенного простудного заболевания;

ИМЕТЬ ЗНАЧЕНИЕ — задает значение свойств объектов, например: пациент может иметь двух братьев.

Как и в системе, основанной на фреймах, в семантической сети могут быть пред­ставлены родовидовые отношения, которые позволяют реализовывать наследо­вание свойств от объектов-родителей. Это обстоятельство приводит к тому, что семантические сети приобретают все недостатки и достоинства представления знаний в виде фреймов. Преимущества заключаются в простоте и наглядности описания предметной области. Однако последнее свойство с усложнением семан­тической сети теряется и, кроме того, существенно увеличивается время вывода. Также к недостаткам семантических сетей относят сложность обработки различ­ного рода исключений.

Другие методы представления знаний

Из других методов представления знаний популярностью пользуется представ­ление знаний по примерам. Работая с системой такого типа, пользователь задает ей несколько примеров решения задач из актуальной предметной облас­ти. На основе этих примеров система самостоятельно строит базу знаний, кото­рая затем применяется для решения других задач. При создании базы знаний пользователь имеет возможность в любой момент вызвать на экран дисплея мат­рицу, состоящую из примеров задач и их решений, с тем чтобы установить в ней наличие пустых мест, которые необходимо заполнить недостающими примера­ми «задача—решение».

Знания в такой системе могут храниться в различной форме. Это может быть, например, интенсиональная форма, когда пользователь вводит в систему прави­ла операций с атрибутами объектов предметной области, приводящие к требуе­мому решению. Также это может быть экстенсиональная форма, при которой каждый пример детально описывается пользователем и представляется в памя­ти компьютера в виде совокупности значений выделенных атрибутов. Возможно сочетание и той, и другой форм. В результате получается матрица примеров, ко­торая может быть расширена или изменена лишь путем корректировки приме­ров, содержащихся в матрице, или их добавлением.

Основным достоинством представления знаний по примерам является простота данного способа, поскольку пользователь может не иметь ни малейшего пред­ставления о продукционных правилах, исчислении предикатов, фреймах и семан­тических сетях. Вместе с тем, в качестве недостатков метода представления знаний по примерам отмечают отсутствие гибкости процесса построения интеллектуаль­ной системы. Пользователь оказывается отстраненным от собственно создания базы знаний и поэтому не может контролировать связи между содержащимися в ней понятиями.

Выбор способа представления знаний осуществляется инженером по знаниям после того, как им достигнуто понимание природы данных моделируемой обла­сти. При решении сложных задач возможны ситуации, когда источники знаний различаются по типам, и, соответственно, представление таких знаний требует использования разных способов (смешанное представление). Тогда для продук­тивного функционирования интеллектуальной системы нередко применяют прин­цип доски объявлений, с помощью которого реализуется взаимодействие различ­ных независимых источников знаний.

1.3. Приобретение знаний

Извлечение знаний – процесс взаимодействия инженера по знаниям с источником знаний (экспертом), в результате которого становятся явными процесс рассуждений специалистов при принятии решения и структура их представлений о предметной области. Занимается извлечением знаний инженер по знаниям. Инженер по знаниям – это специалист по искусственному интеллекту, проектирующий и создающий экспертную систему. Обычно инженер по знаниям выступает в рол

К-во Просмотров: 334
Бесплатно скачать Дипломная работа: Разработка элективного курса "Основы искусственного интеллекта"