Дипломная работа: Разработка измерителя влажности
В первом случае, объектом измерения является непосредственно влажный газ – обычная бинарная газовая смесь, состоящая из газообразной воды и сухого газа, а конечная цель измерений при этом заключается в установлении массовой, молярной и объёмной долей и отношений, массовой и молярной концентрации. При этом необходимо разделение анализируемой среды на два основных компонента: влагу и сухой газ.
Во втором случае, объектом измерения является не влажный газ, как в первом случае, а только содержащийся в нём пар. Конечная цель измерений при этом в установлении относительного термодинамического состояния водяного пара - относительной влажности. Он обладает наибольшей эффективностью, так как не нуждается в разрушении анализируемой среды.
Каждый из видов измерения имеет много методов измерения влажности. В данной работе выбран сорбционно-частотный метод измерения величины влагосостояния.
Сорбционно-частотный метод основан на зависимости собственных колебаний пьезокварцевой пластины при установившемся гидродинамическом равновесии между водяным паром влажного газа и насыщенным раствором сорбента, осаждённого на её поверхности, от влагосостояния анализируемой среды. Данный метод позволяет с высокой точностью контролировать уровень влажности, что определяется сильной зависимостью собственной частоты колебаний кварцевой пластины от приращения её массы, которая растёт при адсорбировании паров воды из окружающей среды на поверхности этой пластины. Т.е. в работе в качестве датчика выбран масс-чувствительный пьезорезонансный датчик.
1.4 Масс-чувствительные пьезорезонансные датчики
Масс-чувствительные резонаторы выполняются из тонких пластин или линз кварца температурно-независимого АТ-среза. В резонаторах возбуждаются колебания сдвига по толщине. Присоединяемая масса может наноситься с одной или с двух сторон, как на электроды, так и на периферию резонатора. Наращивание массы, т.е. сорбция вещества, может происходить по-разному и носить как необратимый, так и обратимый характер. Например, при отработке технологии процессов напыления в установке заподлицо с поверхностью, на которую производится напыление, помещается пьезорезонатор-толщинометр, позволяющий непрерывно контролировать процесс по изменению частоты пьезорезонатора в зависимости от толщины напылённой на него плёнки. В гигрометрах и газоанализаторах пьезорезонаторы покрываются специальными сорбционными покрытиями, удерживающими исследуемое вещество. Так, измерительный резонатор гигрометра покрывается тонкой (3×10-7 мкм) плёнкой окислов кремния [2]. После измерения резонатор может быть "высушен", т.е. происходит десорбция вещества.
Связь частоты с толщиной h` и плотностью r` присоединяемого материала определяется в первом приближении формулой:
Df/f = - r`h`/(rh), (1.1)
где r и h – плотность и толщина пьезоэлемента.
Если предположить, что исследуемое вещество сорбируется по всей поверхности дискового резонатора, то из этой формулы следует:
Df/f = - Dm/m, (1.2)
где m – масса резонатора.
Очевидно, что относительное приращение массы может регистрироваться с тем же разрешением, что и относительное изменение частоты, т.е. 10-6 -10-7 . Для кварцевых резонаторов толщиной h = 0,1 мм минимальные регистрируемые приращения массы на единицу поверхности Dm = (10-6 ¸10-7 ) rh = (10-6 ¸10-7 ) 2,65×0,01 = 2,65 (10-8 ¸10-9 ) г/см2 [2]. Однако такая высокая разрешающая способность может быть реализована только при термостабилизации резонаторов на уровне ±0,1 °С, так как для резонаторов АТ-среза ТКЧ составляет примерно 2×10-6 К-1 . Максимальная присоединяемая масса не должна превышать 2×10-3 г/см2 , и толщина плёнок должна быть не более 1 – 2 мкм, в противном случае резко падает добротность резонатора, что приводит к нестабильности и большой погрешности измерения.
В работе используется температурно-независимый кварцевый резонатор, покрытый тонким слоем оксида кремния (SiO). Он является основной частью датчика, информация которого, впоследствии, должна быть преобразована и проанализирована соответствующими устройствами.
2. СХЕМОТЕХНИЧЕСКИЙ РАЗДЕЛ
2.1 Разработка структурной схемы
Разрабатываемое устройство предназначено для обработки данных, поступающих с пьезодатчика. Этими данными являются изменения собственной частоты колебаний кварцевой пластины в зависимости от массы воды адсорбируемой на её поверхности, которая, в свою очередь, и определяет уровень влажности в той среде, где находится кварц. По разности собственных частот колебаний можно говорить о влагосостоянии среды. Чтобы учесть это изменение, можно использовать кварцевую пластину в качестве задающего элемента в кварцевом генераторе. Это позволяет привести изменение собственной частоты колебаний пластины к изменению частоты колебаний генератора.
Далее необходимо проанализировать изменение частоты генератора, т.е. необходимо подсчитать разность между частотой колебаний кварцевого генератора в сухой и во влажной среде. Так как частота пропорциональна количеству импульсов за определённое время, то при изменении частоты кварцевого генератора и подсчёте определённого количества импульсов, получаем разное время их счёта. Поэтому установим программируемый делитель для накопления импульсов. Делитель будет управляться микропроцессором. В начале подсчёта он сбрасывается сигналом от микропроцессора. При накоплении импульсов в делителе микропроцессор контролирует время накопления по таймеру, и как только делитель сформирует выходной импульс, выдаётся сигнал процессору и он фиксирует время накопления. Далее по разности опорного и фактического времени накопления можно говорить об определённом уровне влажности в той или иной газовой среде.
Проанализировав возможные технические решения, была разработана структурная схема, представленная на рис. 2.1 или [2008-00-992.01.00 Э1].
Рис. 2.1 Структурная схема устройства
2.2 Разработка функциональной схемы
В соответствии со структурной схемой, представленной выше, была разработана следующая функциональная схема устройства (рис. 2.2) или [2008-00-992.02.00 Э2].
Рис. 2.2 Функциональная схема устройства
В его состав входят:
- кварцевый генератор, выполненный на логических элементах;
- делитель;
- микропроцессор, предназначенный для подсчёта времени накопленных в делителе импульсов, его управления, обработки и выводе данных.
2.3 Разработка принципиальной схемы устройства
Кварцевый генератор
Основной частью разрабатываемого устройства является кварцевый генератор, принципиальная схема которого приведена на рис. 2.3.