Дипломная работа: Разработка конструкции цифрового синтезатора частотно–модулированных сигналов
(3.12)
где - модуль упругости материала платы;
- толщина платы;
- коэффициент Пуассона.
(3.13)
Распределенная по площади масса платы и элементов определяется из выражения:
, (3.14)
где - удельная плотность материала платы;
- масса элементов, установленных на плате,
.
, (3.15)
где - масса i - го элемента, установленного на плате,
;
n = 40 - количество элементов, установленных на плате.
Воспользовавшись справочными данными получим
mэ = 104,2´10 –3 кг. следовательно,
Подставляя найденные величины в формулу (4.2.1), определим минимальную частоту собственных колебаний платы. Она будет минимальной при ,
.
В результате механических воздействий печатная плата подвержена усталостному разрушению, в особенности при возникновении механического резонанса. Чаще всего усталостные отказы проявляются в виде обрыва проводников, разрушения паяных соединений, нарушения контактов в разъемах. Подобные разрушения можно предотвратить, если обеспечить выполнение условия
(3.16)
где - минимальная частота собственных колебаний платы;
- ускорение свободного падения, g = 9,8м/c2 ;
- безразмерная постоянная, выбираемая в зависимости от частоты собственных колебаний и воздействующих ускорений.
- максимальные вибрационные перегрузки, выраженные в единицах g.
Следовательно,
¦min 85Гц
Значит, проектируемая плата будет иметь достаточную усталостную прочность при гармонических вибрациях.
Определим эффективность виброзащиты по формуле:
, (3.17)
где - верхняя частота диапазона воздействующих частот, Гц;
- резонансная колебаний печатной платы, Гц.