Дипломная работа: Разработка методов и средств реабилитации объектов отравляющих веществ
Таблица 2 – Динамика изменения концентрации вещества типа Vxпри 40 °С (Со =3,715 моль/л)
Показатели | Динамика изменения концентрации | |||
Время, ч | 24 | 48 | 120 | 144 |
Остаточное содержание вещества, моль/л | 3,075 | 2,137 | 0,187 | 0,075 |
Основными процессами, определяющими поведение ФОВ в почве, являются сорбция почвенными частицами, гидролиз, окислительно-восстановительные реакции и микробиологическая деструкция [26]. Типы почв, их свойства, присутствие почвенной влаги и микроорганизмов, по-видимому, могут оказывать влияние на скорость деструкции. Однако эти вопросы практически не изучены.
Период, в течение которого разлагается 50% Vx в почве (рН=5,3) составляет примерно 15 суток, и основным продуктом является VI [25]. Спустя день концентрация Vxс 0,2 мг/г уменьшилась на 22 % в песчаной почве и на 2 % - в суглинке и торфе. Только 0,1 % вещества оставалось в почве спустя 3 недели. VI достаточно стабилен, но в почве возможен его гидролиз до МФК. Период полураспада VI в почве составляет восемь суток. Приблизительно 40 % VI в почве гидролизуется в первый день и 60 % в течение последующих 12 дней.
Установлена константа скорости деструкции VI в воде и почве 2,4·10-10 ч-1 и 3,6·10-3 ч-1 (при температуре 25°С) соответственно. Данные таблицы 3 свидетельствуют о его высокой растворимости в воде и низкой летучести [25].
химический оружие микроорганизмы биодеструкция
Таблица 3 – Физические свойства продуктов деструкции Vx
Соединение | Растворимость в воде, мг/л | lgKow | lgKoc |
pKа при 25 °С |
Давление пара, мм рт. ст. |
VI | 1,8·105 | -1,15 | 0,75 | 2,00 | 3,6·10-4 |
II | неограниченно | 0,96 | 1,90 | 11,05 | - |
V | 9,5 | 3,48 | 3,28 | - | 5,9·10-9 |
III | неограниченно | -2,28 | 0,15 | 10,08 | 1,8 |
IV | 1,2 | -1,15 | 3,81 | - | 2,7·10-7 |
Примечания: 1 lgKoc - логарифм коэффициента распределения в системе «органический углерод-вода»; 2 lgKow - логарифм коэффициента распределения в системе «октанол/вода»; 3 pKа – десятичный логарифм константы диссоциации. |
Другой продукт деструкции Vx - II стабилен в воде, но, как и вещество Vx, быстро разлагается в почве. II - белое твердое вещество при нормальных условиях, хорошо растворимое в воде, устойчивое к гидролизу при нейтральной и щелочной рН. В 0,1н растворе гидроксида натрия вещество остаётся в неизменном виде в течение 12 дней. lgKoc =1,90 указывает на низкую возможность адсорбции почвой; Kow указывает на небольшую возможность к биоаккумуляции.
МФК стабильна в ОПС, так как она стойка к гидролизу и термическому разложению. Это соединение было обнаружено спустя 10 лет после заражения сухой почвы на полигоне Дагуэй (США) [22,23, 25]. Скорость разложения МФК в ОПС определяется процессами биодеструкции и прочностью связи С-Р. Исходя из значения постоянной Генри, равной 1,22·10-11 атм·м3 /моль при 25°С, испарение кислоты из воды невозможно. В воде МФК может диссоциировать.
Скорость разложения зарина в атмосфере не установлена. Однако известно, что будут протекать реакции гидролиза, фотолиза и окисления. Зарин достаточно устойчив в атмосферном воздухе. Так, при относительной влажности воздуха 60-70% начальная концентрация зарина в течение 24 часов снижается в среднем на два порядка. Скорость гидролиза зарина в воде зависит от температуры, рН и состава воды. Гидролиз идет быстрее в кислой и щелочной среде. С повышением температуры на каждые 10°С скорость гидролиза в нейтральной среде увеличивается почти вдвое. Гидролиз зарина существенно зависит от рН. Так, по данным [25] при 20°С в обычной воде период полуразложения изменяется с 461 ч (рН=6,5) до 46 ч (рН=7,5). При 25°С период полуразложения уменьшается от 237 ч (рН=6,5) до 24 ч (рН=7,5). Период полуразложения, равный 8,3 часа при 0°С и рН=6,5, указывает на некоторую стойкость этого вещества при низких температурах. По данным [23] период полуразложения при 25°С и рН=7 составляет 54 часа.
Гидролиз зарина протекает в две стадии. На первой быстрой стадии образуется изопропиловый эфир МФК (VII). Вторая стадия идет медленнее с образованием МФК (III) и изопропанола (рисунок 2). Продукты гидролиза зарина малотоксичны.
Рисунок 2 - Гидролиз зарина
Известно, что скорость трансформации зарина в почве обусловлена процессами гидролиза и микробиологической деструкции. По данным [25] более 90 % внесенного в почву зарина разлагается в течение 5 дней. Согласно [24] скорость разложения зарина в песке возрастает с увеличением влажности. Так, при 20°С и влажности песка 0,2 % разлагается 38 % вещества, а при влажности 5 - 50 % вещества.
Зарин более стоек при низких температурах. В статье [24] представлена информация о скорости разложения некоторых продуктов деструкции зарина. Зарин разлагается с образованием VII. Соединение VII достаточно устойчиво в ОПС. В результате гидролиза VII образуется МФК. Хорошая растворимость МФК в воде указывает на возможную миграцию МФК в грунтовые воды.
Зоман более устойчив к действию воды, чем зарин. Гидролиз зомана идет и в кислых, и в щелочных средах. Согласно [22] время 50 % -го гидролиза при 30 о С и величинах рН, равных 2, 4 и 7, составляет 6,4; 250 и 41 час соответственно. Согласно [26] период полуразложения при 25 о С и рН=6 составляет 60 часов. Время 50 % -го гидролиза при 20 о С и рН=7 по данным [22] составляет 82,5 часа. Гидролиз протекает в две стадии. На первой стадии образуется пинаколиловый эфир МФК (VIII), который далее медленно гидролизуется до МФК. При рН>10 гидролиз VIII осуществляется за несколько минут с образованием III. В почве зоман также разлагается за счет реакции гидролиза до соединений VIII и III. Схема реакции гидролиза зомана представлена на рисунке 3:
Рисунок 3 - Гидролиз зомана
Основные продукты трансформации ФОВ, появление которых возможно в ОС в процессе функционирования объекта по УХО, представлены в таблице 4.
Таблица 4 - Основные продукты трансформации ФОВ в ОС
ФОВ | Продукты трансформации ФОВ в ОС | ||
атмосфера | вода | почва | |
Vx | - | II,III,IV,V,VI | II,III,IV,V,VI |
Зарин | VII | III, VII | III, VII |
Зоман | - | III,VIII | III,VIII |
Следует отметить, что проблема трансформации ФОВ в объектах ОС исключительно сложна. Поэтому перечень продуктов трансформации ОВ, приведенный в таблице 4 на основании обобщения литературных данных, может корректироваться по мере обнаружения в ОС новых загрязняющих веществ и отработки методик их определения.