Дипломная работа: Разработка монокристального монофункционального регулятора напряжения для бортовой сети автомобиля
2. Структурная схема регулятора напряжения
2.1 Методы и способы регулирования напряжения в бортовой сети автомобиля
Регулятор напряжения поддерживает напряжение бортовой сети в заданных пределах во всех режимах работы при изменении частоты вращения ротора генератора, электрической нагрузки, температуры окружающей среды. Кроме того, он может выполнять дополнительные функции - защищать элементы генераторной установки от аварийных режимов и перегрузки, автоматически включать в бортовую сеть цепь обмотки возбуждения или систему сигнализации аварийной работы генераторной установки.
Все регуляторы напряжения работают по единому принципу. Напряжение генератора определяется тремя факторами - частотой вращения ротора, силой тока, отдаваемой генератором в нагрузку и величиной магнитного потока, создаваемой током обмотки возбуждения. Чем выше частота вращения ротора и меньше нагрузка на генератор, тем выше напряжение генератора. Увеличение силы тока в обмотке возбуждения увеличивает магнитный поток и с ним напряжение генератора, снижение тока возбуждения уменьшает напряжение. Все генераторы напряжения, отечественные и зарубежные, стабилизируют напряжение изменением тока возбуждения.
Если напряжение возрастает или уменьшается регулятор соответственно уменьшает или увеличивает ток возбуждения и вводит напряжение в нужные пределы.
Из рис. 2.1.1. видно, что регулятор 1 содержит измерительный элемент 5, элемент сравнения 3 и регулирующий элемент 4. Измерительный элемент воспринимает напряжение генератора и преобразует его в сигнал Uизм , который в элементе сравнения сравнивается с эталонным значением Uэт . Если величина Uизм отличается от эталонной величины Uэт , то на выходе измерительного элемента появляется сигнал Uo , который активирует регулирующий элемент, изменяющий ток в обмотке возбуждения так, чтобы напряжение генератора вернулось в заданные пределы.
Рис. 2.1.1. Блок-схема регулятора напряжения (1 – регулятор; 2 – генератор; 3 – элемент сравнения; 4 – регулируемый элемент; 5 – измерительный элемент)
Таким образом, к регулятору напряжения обязательно должно быть подведено напряжение генератора или напряжение из другого места бортовой сети, где необходима его стабилизация, например, от аккумуляторной батареи, а также подсоединена обмотка возбуждения генератора. Если функции регулятора расширены, то и число подсоединений его в схему растет. Чувствительным элементом электронных регуляторов напряжения является входной делитель напряжения. С входного делителя напряжение поступает на элемент сравнения, где роль эталонной величины играет обычно напряжение стабилизации стабилитрона.
Особенностью автомобильных регуляторов напряжения является то, что они осуществляют дискретное регулирование напряжения путем включения и выключения в цепь питания обмотки возбуждения (в транзисторных регуляторах) или последовательно с обмоткой дополнительного резистора (в вибрационных и контактно-транзисторных регуляторах), при этом меняется относительная продолжительность включения обмотки или дополнительного резистора.
Аккумуляторная батарея для своей надежной работы требует, чтобы с понижением температуры электролита напряжение, подводимое к батарее от генераторной установки, несколько повышалось, а с повышением температуры - понижалось. Для автоматизации процессов изменения уровня поддерживаемого напряжения применяется датчик, помещенный в электролит аккумуляторной батареи и включаемый в схему регулятор напряжения. В простейшем случае термокомпенсация в регуляторе подобрана таким образом, что в зависимости от температуры поступающего в генератор охлаждающего воздуха напряжение генераторной установки изменяется в заданных пределах.
В рассмотренной схеме регулятора напряжения, как и во всех регуляторах аналогичного типа, частота переключений в цепи обмотки возбуждения изменяется по мере изменения режима работы генератора. Нижний предел этой частоты составляет 25-50 Гц.
Имеется и другая разновидность схем электронных регуляторов, в которых частота переключения строго задана. Регуляторы такого типа оборудованы широтно-импульсным модулятором (ШИМ), который и обеспечивает заданную частоту переключения. Применение ШИМ снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.
В настоящее время все больше зарубежных фирм переходят на выпуск генераторных установок без дополнительного выпрямителя. Для автоматического предотвращения разряда аккумуляторной батареи при неработающем двигателе автомобиля в регулятор такого типа заводится фаза генератора. Регуляторы, как правило, оборудованы ШИМ, который, например, при неработающем двигателе переводит выходной транзистор в колебательный режим, при котором ток в обмотке возбуждения невелик и составляет доли ампера. После запуска двигателя сигнал с вывода фазы генератора переводит схему регулятора в нормальный режим работы.
Перспективным является развитие мультифункционального класса регуляторов напряжения. Этот класс обладает следующим набором функций:
1. регулировка напряжения в удаленной от генератора точке бортовой электрической сети автомобиля;
2. диагностика состояния электрической связи генератора с удаленной контролируемой точкой;
3. диагностика отсутствия вращения ротора генератора;
4. диагностика короткого замыкания или разрыва цепи обмотки возбуждения генератора;
5. оценка величины допуска по напряжению в контролируемой точке и индикация ее результатов;
6. пассивная диагностика технического состояния генератора и индикация ее результатов.
Эти регуляторы имеют защиту от импульсных перенапряжений в бортовой сети и от обратного включения аккумуляторной батареи. Типовой мультифункциональный регулятор выполнен по гибридной толстопленочной технологии.
Широкое распространение также могут найти так называемые СР-регуляторы, которые представляют собой приборы высокой степени интеграции, имеющие вышеперечисленный набор функциональных возможностей, а также таймер и выключатель нагрузки. Также они характеризуются удвоенной величиной коэффициента температурной зависимости напряжения настройки и наличием режима плавного возбуждения. В данных регуляторах в случае увеличения падения напряжения в цепи связи выхода генератора и удаленной контролируемой точки бортовой сети выше допустимой величины или разрыва цепи, регулятор переходит на управление генератором путем регулирования напряжения на его выходе (местное регулирование). Режим плавного возбуждения генератора служит для стабилизации работы двигателя, особенно на оборотах до выхода на режим холостого хода (этап запуска двигателя). Процесс возбуждения генератора является лавинообразным и занимает достаточно короткий (по сравнению с запуском двигателя) промежуток времени, и заканчивается до того как двигатель выйдет на обороты холостого хода. В этом случае генератор, включенный в бортовую электрическую сеть, выполняет роль дополнительной нагрузки для двигателя, что затрудняет его запуск. СР – регуляторы после окончания работы таймера обеспечивают плавное нарастание среднего значения тока в обмотке возбуждения генератора от 0 до 100%. На этом этапе генератор вырабатывает и отдает в бортовую сеть меньше электрической энергии, чем требует подключенные потребители. Недостающую энергию в бортовую сеть отдает аккумулятор. Максимальная продолжительность промежутка плавного возбуждения генератора составляет порядка 10 с. На этапе плавного возбуждения генератора СР – регулятор следит за увеличением частоты вращения ротора; при достижении ротором частоты, равной 1800 об/мин процесс плавного возбуждения заканчивается.
При запуске двигателя стартер одновременно с коленчатым валом двигателя раскручивает и ротор генератора. Поскольку обмотка возбуждения подключена к источнику питания (аккумуляторной батарее и/или выводу генератора), то одновременно с запуском двигателя начинается процесс возбуждения генератора. Генератор в этот момент является дополнительной нагрузкой для стартера, требующей от него дополнительной мощности, а от аккумуляторной батареи - дополнительного запаса электрической энергии. Таймер, введенный в состав СР-регуляторов, задерживает момент подключения обмотки возбуждения к источнику питания, соответственно, задерживая момент возбуждения генератора, и облегчая тем самым запуск двигателя. При наличии таймера требуется меньшая мощность стартера и меньшая емкость аккумуляторной батареи.
СР-регуляторы напряжения и другие специальные мультифункциональные регуляторы носят возможность управлять выключателем нагрузки.
Назначение выключателя нагрузки состоит в том, чтобы подключать или отключать от бортовой сети второстепенные электрические нагрузки.
2.2 Описание метода регулирования напряжения с помощью широтно-импульсной модуляции
Данный метод основан на управлении транзистора импульсами с переменной скважностью при постоянной частоте этих импульсов. В зависимости от скважности импульсов производится регулирование протекающего через транзистор тока. То есть чем больше скважность (Q = Тпер /Ти ), тем более закрыт транзистор и тем меньший протекает через него ток и, наоборот, чем меньше скважность импульсов, тем более открыт транзистор и тем больший ток протекает через него. На данном принципе и основано регулирование напряжения в бортовой сети автомобиля. С помощью широтно-импульсной модуляции производится управление работой выходного транзистора, который производит регулирование тока, протекающего через обмотку возбуждения генератора, который в свою очередь определяет напряжение на фазовых обмотках генератора. Структурная схема регулятора напряжения, использующего данный метод, представлена на рис.2.2.1. Применение широтно-импульсной модуляции в данной схеме снижает влияние на работу регулятора внешних воздействий, например, уровня пульсаций выпрямленного напряжения и т.п.
Сравнивая рис.2.2.1. с рис.2.1.1., можно провести аналогию: к измерительному элементу относится делитель напряжения 4, который формирует в зависимости от напряжения на входе микросхемы (на выходе генератора) определенный сигнал uизм . К элементу сравнения относятся следующие блоки: компаратор напряжения 5, цифровой счетчик 2 с резистивной матрицей 3, которые вместе формируют эталонное пилообразное напряжение. И, наконец, к регулирующему элементу относятся: триггерное устройство 8, выходной каскад 9, выходной транзистор 13, которые предназначены для изменения определенным образом тока, протекающего через обмотку возбуждения 14. Остальные блоки, расположенные на рис. 2.2.1., имеют какое-либо другое специальное или вспомогательное значение.