Дипломная работа: Разработка монокристального монофункционального регулятора напряжения для бортовой сети автомобиля
Рис.2.2.1. Структурная схема регулятора напряжения на основе ШИМ (1 – генератор прямоугольных импульсов; 2 – 5 – ти разрядный счетчик на Т-триггерах; 3 – резистивная матрица; 4 – резистивный делитель напряжения; 5 – компаратор напряжения; 6 – блок защиты 1; 7 – датчик температуры; 8 – триггерное устройство; 9 – выходной каскад; 10 – блок защиты 2; 11 – стабилизатор напряжения; 12 – гасящий диод; 13 – выходной n-p-n- транзистор; 14 – обмотка возбуждения генератора; 15 – интегральная микросхема регулятора напряжения)
Регулятор напряжения, принцип действия которого основан на широтно-импульсной модуляции, работает следующим образом.
Так как напряжение на выходе генератора сильно зависит от частоты вращения ротора генератора, величины тока через нагрузку, тока через обмотку возбуждения, то для регулирования и нормирования данного напряжения необходимо иметь эталонное напряжение, мало зависящее ото всех возможных факторов: питающего напряжения, тока нагрузки, величины магнитного потока в обмотке возбуждения и т.д. В рассматриваемом регуляторе напряжения роль такого устройства выполняют 5-ти разрядный счетчик цифровых импульсов на основе Т-триггеров 2, управление работой которых производится с помощью генератора прямоугольных импульсов 1 и резистивной матрицы 3, которые в совокупности формируют спадающее пилообразное напряжение. Данное пилообразное напряжение "насаживается" на постоянную составляющую, которая снимается с датчика температуры для согласования работы с компаратором напряжения 4. Так как перечисленные блоки питаются от стабилизатора напряжения 11, напряжение на выходе которого практически не зависит от внешних воздействий на регулятор, то пилообразное напряжение, формируемое данными блоками можно считать эталонным. Период "пилы" равен:
Тпилы = Тген * 25 ,
где Тпилы – период спадающего пилообразного напряжения; Тген - период импульсов тактового генератора 1.
Далее, для того чтобы произвести приведение в норму напряжения в бортовой сети автомобиля (в случае отклонения от номинального в ту или иную сторону) необходимо произвести сравнение напряжения в бортовой сети с эталонным напряжением uэт . для этой цели может быть служить компаратор напряжения 5, на один вход которого подается эталонное напряжение с формирователя пилообразного напряжения, а на другой – напряжение с резистивного делителя напряжения 4, предназначенного для формирования измерительного сигнала uизм , удобного для работы компаратора напряжения 5 и согласованного с постоянной составляющей эталонного пилообразного напряжения.
После сравнения эталонного напряжения с напряжением в сети автомобиля необходимо осуществить управление регулирующим элементом. Для управления регулирующим элементом – выходным транзистором предназначены триггерное устройство 8 и выходной каскад 9. В зависимости от результата сравнения компаратором напряжения 5 могут быть следующие результаты:
1) Если напряжение на входе микросхемы больше номинального напряжения, то делитель напряжения 4 формирует такой сигнал на входе компаратора, при котором на его выходе возникает уровень, закрывающий выходной транзистор 13, но для проверки работоспособности выходного транзистора цифровым счетчиком 2 образуется короткий импульс, равный времени в 1,5 раза большее, чем период тактовой частоты (благодаря управляющему RS-триггеру).
Если пренебречь этим коротким импульсом, то можно считать, что выходной транзистор будет полностью закрыт. В результате этого тока через обмотку возбуждения протекать не будет и напряжение в бортовой сети будет падать до тех пор пока не достигнет нормы.
1) Если напряжение на входе микросхемы будет меньше номинального, то делитель напряжения 4 сформирует сигнал на входе компаратора, при котором на его выходе возникает уровень, полностью открывающий выходной транзистор 13. В результате того, что выходной транзистор будет полностью открыт, через него, а, следовательно, и через обмотку возбуждения потечет ток, практически определяемый параметрами обмотки возбуждения. Из-за протекания этого тока по обмотке возбуждения напряжение на выходе генератора начнет повышаться.
2) Если напряжение на входе микросхемы будет соответствовать номинальному, то компаратор напряжения 5 сработает посередине периода пилообразного напряжения и на выходе компаратора будет наблюдаться сигнал частотой 1/Тпилы и со скважностью 2. Такой же сигнал будет и на выходном транзисторе 13. Напряжение, соответствующее данному режиму, называется напряжением настройки.
Для данного регулятора напряжения настройки должно быть равно uнастр = 14, 1 В ± 0,1 В.
Соотношение эталонного пилообразного напряжения, напряжения на выходе резистивного делителя напряжения и напряжения на базе выходного транзистора приведены на рис. 2.2.2.
3) Если напряжение на входе микросхемы будет незначительно отличаться от номинального в ту или иную сторону, то компаратор сработает по "пиле" ранее или позднее ее середины, что будет соответствовать частоте на выходе компаратора 5 и на базе выходного транзистора 13 со скважностью меньшей 2 и большей 2, соответственно. В случае Q < 2 длительность импульса будет больше длительности паузы, то есть выходной транзистор будет больше открыт, чем в случае, соответствующем напряжению настройки на входе микросхемы. Таким образом, ток через обмотку возбуждения будет увеличен и напряжение в сети также увеличено. В случае Q > 2, наоборот, длительность паузы больше длительности импульса, то есть выходной транзистор будет больше закрыт, чем в случае, соответствующем напряжению настройки (Q = 2). Таким образом, ток через обмотку возбуждения будет уменьшен и напряжение в сети также уменьшено.
Рис. 2.2.2. Диаграмма, соответствующая напряжению настройки
Для повышения надежности и долговечности работы аккумуляторной батареи необходимо предусмотреть температурную зависимость изменения напряжения настройки (чаще всего отрицательного). Для этих целей в данном регуляторе напряжения предусмотрен датчик температуры 7, который определяет температурный коэффициент напряжения настройки (ТКН). Работа этого узла основана на изменении под влиянием температуры окружающей среды напряжения постоянной составляющей пилообразного напряжения, то есть уровня эталонного напряжения. Благодаря этому напряжение настройки будет изменяться при изменении температуры окружающей среды. При отрицательном ТКН при увеличении температуры будет наблюдаться уменьшение значения напряжения настройки и, наоборот.
Рис. 2.2.3. Диаграммы, поясняющие работу регулятора напряжения при незначительном отклонении напряжения в сети от напряжения настройки
В рассматриваемом регуляторе напряжения также предусмотрен ряд защит: от перенапряжения в сети, от высоковольтных коротких по времени импульсов, "проскакивающих" по бортовой сети автомобиля, от опасных всплесков напряжения в бортовой сети, возникающих из-за обрыва цепи обмотки возбуждения, которая имеет значительную индуктивность.
Функцию защиты от перенапряжений в сети выполняет блок защиты 1 – 6. При повышении напряжения в сети выше определенного уровня компаратор 5 на блок защиты 1 подает соответствующий сигнал, который блокирует работу триггерного устройства и выходной транзистор 13 полностью закрывается, в результате чего ток через обмотку возбуждения прекращается и напряжение на выходе генератора будет падать.
2-ую защиту выполняет блок защиты 2, который реагирует на высоковольтные импульсы, защищая выходной транзистор от выхода из строя.
И, наконец, 3-ю защиту выполняет мощный диод 12. Этот диод при закрытии выходного транзистора 13 предотвращает опасные всплески напряжения, возникающие из-за обрыва цепи обмотки возбуждения со значительной индуктивностью. В этом случае ток обмотки возбуждения может замыкаться через этот диод и опасных всплесков напряжения не происходит. Поэтому этот диод носит название гасящего. Стабилизатор напряжения 11 предназначен для питания всех блоков кроме выходного каскада 9.
3. Разработка принципиальной электрической схемы и особенности структуры элементов монокристального регулятора напряжения
3.1 Генератор прямоугольных импульсов
Генератор прямоугольных импульсов предназначен для формирования импульсов прямоугольной формы, которые необходимы для подачи их на цифровую часть микросхемы с целью получения сигналов прямоугольной формы разной частоты.
Принципиальная электрическая схема генератора прямоугольных импульсов приведена на рис. 3.1.1.
Данная схема питается от стабилизатора напряжения с выходным напряжением uпит = 5,7 В. Рассматриваемый генератор обеспечивает на выходе импульсы прямоугольной формы частотой f = 2 кГц и скважностью Q ~ 2.
Работа генератора основана на заряде – разряде конденсатора С1. Время заряда и разряда конденсатора, а, следовательно, время импульса и время паузы определяются величиной емкости конденсатора С1 и параметрами p-n-p- и n-p-n- транзисторов (в основном внутренними сопротивлениями транзисторов).
Схема генератора прямоугольных импульсов работает следующим образом.