Дипломная работа: Разработка программного модуля для нахождения оптимальных предельно-допустимых выбросов в атмосф
Состояние локального загрязнения приземного слоя воздуха существенно зависит от метеорологических условий. Хорошо известно, что при одних и тех же параметрах выбросов ИЗА, в зависимости от метеоусловий, концентрация у земли может меняться на порядок и более.
С точки зрения распространения ЗВ в атмосфере метеоусловия подразделяются на нормальные и аномальные [10]. Нормальные характеризуются, прежде всего, наличием ярко выраженного среднего направления ветра. Таковыми в крупных городах являются условия со скоростью ветра более 1-2 м/сек. При меньших скоростях (штиль или близкое к штилевому состояние) в результате рельефных особенностей и температурной неоднородности подстилающей поверхности могут образовываться локальные циркуляционные зоны, приводящие к накоплению ЗВ в слое дыхания [17,18]. Ситуация становится особенно опасной при наличии вертикальной температурной инверсии, препятствующей уносу примеси в верхние слои атмосферы. Именно при таких метеоусловиях фиксируются максимальные уровни загрязнения при инструментальных наблюдениях.
Подразделение метеоусловий на нормальные и аномальные играет важную роль для осознания результатов инженерных расчетов загрязнения атмосферы. Дело в том, что все инженерные модели применимы только при нормальных метеоусловиях, поскольку единое направление ветра и его стационарность являются их непременным условием. Поэтому расчетная "максимальная" концентрация является не абсолютным максимумом загрязнения, а наибольшей из концентраций для нормальных условий. Даже если предположить, что методика расчета и параметры выбросов полностью соответствуют происходящему в природе, то превышение расчетного максимума все является равновозможным и зависит от частоты появления аномальных неблагоприятных метеоусловий.
В рамках любой локальной стационарной модели наиболее важными с точки зрения рассеяния примесей метеорологическими параметрами являются скорость и направление ветра, а также показатели диффузионной активности (устойчивости) атмосферы. Скорость и направление ветра измеряются непосредственно. Обзор методов измерений скорости ветра показывает, что относительная погрешность составляет от 15% (при скоростях порядка 5 м/с) до 55% (при скорости порядка 1м/с) [26]. С точки зрения решения задач переноса аэрозолей локального масштаба представляет интерес, что погрешности при определении направления ветра могут привести к ошибке положения оси дымового факела на карте территории порядка 10-15%, в результате чего при достаточно устойчивой стратификации атмосферы факел просто не накроет расчетную точку и приведет к большой ошибке моделирования. Это следует учитывать при интерпретации понятия "опасное направление ветра" и определении основных виновников загрязнения заданной точки города. Сказанное еще раз подчеркивает, что на практике при решении краткосрочных задач нормирования выбросов в смысле неравенства (1) представляет интерес предсказание с разумной точностью максимума разовой концентрации даже без указания момента времени, когда это произойдет.
1.4 Данные наблюдений за загрязнением атмосферы
При обосновании системы мониторинга на территории России академик Ю.А. Израэль подчеркивает, что "только регулярные наблюдения в строго определенных местах и в строго установленные сроки являются источниками прямой и статистически обеспеченной информации о загрязнении окружающей среды"[23]. Такого рода наблюдения применительно к загрязнению атмосферы осуществляются на сети стационарных постов Росгидромета в городах . Посты расположены только в крупных городах. Например, в Кемеровской области стационарные посты оборудованы в Новокузнецке (10), Кемерово (9) и Белово (1). Причем количество постов сокращается (в 90-х годах в Кемерово было 12 постов). На постах ежедневно (в 7, 13 и 19 часов местного времени) осуществляются отборы проб воздуха, которые доставляются в лабораторию местного подразделения Росгидромета, где анализируются стандартизированными методами. Контролируются только незначительное число наиболее распространенных ЗВ (10-20 примесей), в то время как в данных инвентаризации совокупности предприятий крупного промышленного города встречается на практике 100-200 веществ. Таким образом, большинство ЗВ на сети не контролируется ничем, кроме интуиции разработчиков проектов и согласующих эти проекты экспертов.
Обзор методов инструментального анализа воздуха [21,22] показывает, что количественные оценки погрешностей различных этапов лабораторных методов анализа полученных проб составляют 6-25% (с доверительной вероятностью 95%).
1.5 Модели расчета загрязнения атмосферы
Даже при наличие данных наблюдений за загрязнением воздуха на сети стационарных постов, одной из важнейших наукоемких задач охраны атмосферы является расчет загрязнения заданной территории по имеющимся данным о выбросах и условия распространения примесей. Действительно, оценить перспективный уровень загрязнения в зависимости от варианта промышленного развития можно только расчетными методами. Кроме того, методы инструментальных наблюдений в общем случае не могут указать вклад отдельного источника (предприятия) в измеряемую суммарную величину, что необходимо при определении основных виновников загрязнения, установлении ПДВ и начислении платы за выброс. Поэтому моделирование загрязнения атмосферы необходимо как для анализа, так и для прогноза.
В предисловии к [17] А.М. Яглом подчеркивает, что расчет диффузии примеси в атмосфере "не может быть сведен к какой-то задаче математической физики, а обязательно требует тех или иных нестрогих гипотез и приближенных допущений. По этой причине задача о распространении примеси в атмосфере не имеет одного общепринятого ‘правильного решения’, а характеризуется наличием целого ряда различных подходов к требуемому расчету, ни один из которых не может претендовать на полную строгость и точность".
Модели, естественно, можно классифицировать с различных точек зрения, и этому посвящена весьма обширная литература [10,17,18,20]. С позиций, используемых для построения научных теорий, модели подразделяются на статистические и полуэмпирические. Статистические основаны на том предположении, что поступающее из источника ЗВ переносится вместе со средним потоком, а его распространение в поперечном потоку направлении происходит под воздействием вихрей, движение которых подчиняется определенным статистическим закономерностям. Полуэмпирические используют для получения результата те или иные решения уравнения турбулентного переноса в предположение об аналогии между турбулентной и молекулярной диффузией. Слово "полуэмпирические" подчеркивает, что для задания коэффициентов турбулентной диффузии необходимы эмпирические предположения, и только после этого можно начинать поиск точного или численного решения уравнения переноса.
В зависимости от времени осреднения рассчитываемой концентрации локальные модели можно подразделить на краткосрочные (разовые) и долговременные. Как статистические, так и полуэмпирические краткосрочные модели рассчитывают концентрацию атмосферной примеси, осредненную за 20-30 минут. Долгосрочные предназначены для оценки загрязнения, осредненного за большие промежутки времени (сезон, год) и основаны на осреднении разовых расчетов с использованием повторяемости характерных для данной территории условий распространения ЗВ [17,24,27,31].
С точки зрения простоты использования модели также можно разбить на два класса: научно-исследовательские и инженерные. Первые, будучи способными описывать достаточно тонкие особенности распространения ЗВ в атмосфере (сложный рельеф, штиль, особенности турбулентного режима, локальные циркуляции и т.д.) [17,18], являются безусловно более сложными, требуют высокой квалификации персонала как для применения моделей, так и для получения специфических и дорогостоящих исходных данных. Вторые, предназначенные для проектных расчетов, доведены до однозначно трактуемых числовых зависимостей, табличных и графических аппроксимаций и обеспечены системой сбора (расчета) исходной информации для возможности реализации необходимых количественных оценок в процессе выполнения проектных работ [1,2]. Можно сказать, что именно наличие реальной на сегодняшний день системы обеспечения модели исходными данными является признаком того, что сама модель представляет практический интерес для целей управления (нормирования) промышленных выбросов.
Наиболее распространенной для инженерных приложений и принятия административных решений за рубежом является локальная модель Гауссовского факела [17,20], в основе которой лежит статистическая теория с рядом упрощающих предположений и большим количеством эмпирических таблиц для задания дисперсионных коэффициентов [20], определяющих процесс расширения факела при удалении от источника. Краткосрочная модель позволяет рассчитать в заданной точке территории разовую (среднюю за 20-30 минут) концентрацию в зависимости от трех параметров – скорости ветра, направления ветра и класса устойчивости (температурной стратификации) атмосферы. Гауссовская модель долговременного осреднения позволяет оценить среднюю за заданный период концентрацию по совместному распределению (за этот период) указанных трех параметров. Для практического использования модели достаточно иметь данные стандартных метеорологических наблюдений и параметров источников в объеме, рассмотренном в пункте 2.
Принятая на федеральном уровне Минприродой России [2] для нормативных расчетов модель атмосферного переноса ЗВ предназначена для расчета максимальных разовых концентраций См атмосферных примесей, фигурирующих в условии (1.1). Модель была создана в конце 60-х годов и в дальнейшем доведена до инженерных формул коллективом разработчиков под руководством проф. М.Е. Берлянда в Главной геофизической обсерватории им. А.И. Воейкова. В настоящее время она оформлена в виде руководящего документа ОНД-86 [2], вышедшего взамен ранее действующего СН-369-74 (с рядом уточнений, учетом коэффициента рельефа и застройки). Модель основана на численном решении стационарного полуэмпирического уравнения турбулентной диффузии для различных типов источников с последующей аналитической аппроксимацией. Численные расчеты проводились при атмосферных стратификациях, которым соответствуют наибольшие значения максимума приземной концентрации, достигаемые при “опасной” скорости ветра. Отсюда следует, что модель [2] изначально нацелена на расчет верхней оценки приземных концентраций при нормальных (соответствующих условиям стационарности) метеоусловиях. Поэтому аналитические аппроксимации, в отличие от Гауссовских моделей, позволяют оценивать концентрации ЗВ только в зависимости от двух параметров – скорости и направления ветра. А поскольку невозможно получить априорного аналитического решения для нахождения максимума (по скорости и направлению) суммарной концентрации для произвольного множества произвольно расположенных ИЗА, то указанная задача решается численно для каждого конкретного случая либо методом простого перебора, либо на основе анализа характерных особенностей заданного множества ИЗА. Для применения модели нужно знать, кроме параметров ИЗА, коэффициент рельефа территории, коэффициент осаждения исследуемой примеси, параметр характерной “опасной” с