Дипломная работа: Региональный климат Рязанской области, его вековая динамика и роль в эволюции ландшафтов
Как правило, проявления солнечной активности связывают с появлением солнечных циклов с периодами 11, 22, 33 и 88 – 90 лет в климатических вариациях метеовеличин [12]. Проявление 11-летнего цикла солнечной активности (цикл Швабе – Вольфа) представляет собой колебания числа солнечных пятен. Данная периодичность не столь выражена, как 22-летний цикл Хэйла, обнаруженный в климатических записях во многих регионах земного шара. Этот цикл связан с переполюсовкой магнитного поля на Солнце. Для объяснения существующих неопределенностей в климатическом отклике на солнечное воздействие (пространственные неоднородности, слабость внешнего сигнала) в ряде работ разработан механизм возникновения в атмосфере энергоактивных областей (систем), связанных с зонами развития неустойчивости, усиливающими атмосферный эффект солнечно-обусловленного сигнала из-за внутренних свойств самой системы. Свойство усиливать внешний сигнал характерно для нелинейных динамических систем. В частности, одной из таких областей по мнению [12] является зона Северной Атлантики.
33-летний цикл был выявлен Э. Брюкнером. Он соответствует трем 11-летним циклам и выражает многолетние колебания климата от холодных и влажных лет к теплым и сухим на протяжении от 20 до 50 лет. В отдельных случаях продолжительность цикла Брюкнера может меняться.
Периодичность около 88 – 90 лет (цикл Глейсберга) проявляется в климатических характеристиках очень редко.
Определенное влияние на изменение глобальной температуры может оказывать тропосферный аэрозоль, причем влияние его на температуру имеет обратный знак по сравнению с ростом концентрации парниковых газов. В настоящее время не существует единого мнения о роли тропосферного аэрозоля в современном изменении климата. Ряд исследователей считают, что эти два процесса, действующие в противоположных направлениях, оказывают равнозначное влияние на температуру воздуха. Однако существует и другое мнение о том, что роль тропосферного аэрозоля значительно меньше по сравнению с влиянием антропогенной деятельности в результате выбросов парниковых газов в атмосферу.
Существует и ряд других факторов, вызывающих естественные колебания климата, среди которых особое внимание уделяется автоколебаниям климатической системы, включающих такие явления, как Эль-Ниньо – южное колебание. Эти естественные изменения климата продолжительностью от 3 до 7 лет оказывают наибольшее влияние на изменение локальных температур поверхности воды и воздуха в тропических районах Тихого океана.
Среди причин антропогенного изменения климата можно назвать:
- увеличение концентрации углекислого газа в атмосфере. По данным наблюдений объемная концентрация CO2 в атмосфере повысилась с 315 млн -1 в 1958 году до 343 млн -1 в 1984 г. Исходя из расчетов Будыко М. И. [2] можно заключить, что в середине XIX века эта концентрация составляла около 280 млн -1 . Таким образом, к середине 80-х годов прошлого века количество углекислого газа возросло на 20 – 25%. Весьма вероятно, что удвоение количества CO2 будет иметь место во второй половине XXI века. Есть основания считать, что увеличение количества CO2 , достигнутое в современную эпоху, уже оказывает существенное влияние на глобальный климат и на биосферу в целом. Так, существуют неоспоримые доказательства прямого влияния увеличения концентрации CO2 на физиологические процессы в растениях (см. пункт 1.3).
- увеличение содержания малых примесей в атмосфере. Хозяйственная деятельность человека приводит к росту концентрации не только углекислого газа, но и ряда других газов, которые также усиливают парниковый эффект и способствуют повышению температуры нижних слоев воздуха: метан (CH4 ), окислы азота, озон и др.
Содержание метана в атмосфере, куда он поступает из болот, глубоких трещин в земной коре и некоторых других источников невелико (примерно 1 – 2 млн -1 ). В современную эпоху количество атмосферного метана быстро возрастает как в результате развития сельскохозяйственного производства (особенно расширения обильно орошаемых рисовых полей), так и в результате роста добычи природного газа.
Из окислов азота главное значение имеют N2 O и NO2 , концентрация которых составляет около 0,3 млн -1 . Значительное количество окислов азота поступает в атмосферу при производстве минеральных удобрений и в результате некоторых других видов хозяйственной деятельности.
Есть основания считать, что хозяйственная деятельность оказывает влияние на рост озона (О3 ) в тропосфере. Увеличение массы тропического озона также должно усилить парниковый эффект в атмосфере.
В современном воздухе имеются также малые примеси, поступившие туда только из антропогенных источников – хлорфторуглеводороды (фреоны).
- рост производства энергии, который приводит к дополнительному нагреванию атмосферного воздуха. Имеются оценки количества тепла, которое выделяется в результате хозяйственной деятельности человека. В целом для Земли это количество на единицу поверхности невелико и составляет около 0,01 Вт/м2 . Для наиболее развитых промышленных районов указанная величина на два порядка больше и достигает 2 – 3 Вт/м2 . На территориях больших городов эта величина возрастает еще на один – два порядка, т. е. до десятков и сотен Вт/м2 .
При изменении притока энергии, получаемой Землей от Солнца на 1% средняя температура у ее поверхности изменяется на 1,50 С. Если считать, что производство тепла в результате деятельности человека составляет около 0,006% от общего количества радиации, поглощенной системой Земля – атмосфера, то соответствующее этому повышение средней температуры будет равно примерно 0,010 С. Эта величина сравнительно незначительна, однако при резкой неравномерности размещения на поверхности Земли источников тепла, созданных человеком, в отдельных районах повышение температуры может быть значительно большим.
- другие факторы. К их числу можно отнести: увеличение массы антропогенного аэрозоля в атмосфере, орошение засушливых районов (понижение альбедо примерно на 0,10 [2]), строительство водохранилищ (понижение альбедо).
1.3 Наблюдаемые последствия климатических изменений и их возможное влияние на эволюцию геосистем
Несмотря на относительную недолговременность происходящих климатических изменений, уже сейчас можно выявить ряд вызванных ими последствий. В частности, к ним можно отнести:
· отступление горных ледников практически во всех широтных зонах;
· сокращение площади и уменьшение толщины морских льдов в Арктическом бассейне;
· уменьшение площади шельфовых ледников в Антарктиде;
· изменение структуры кораллов в тропических широтах;
· изменение границ и толщины снежного покрова в умеренных и высоких широтах;
· увеличение длины вегетационного периода;
· изменение сезонных амплитуд температуры воздуха и сезонных колебаний концентрации CO2 в атмосфере;
· прямое влияние увеличения концентрации CO2 на естественную и культурную растительность;
· смещение сроков наступления сезонных явлений в жизни растений и животных;
· расширение границ ареалов растений и животных к северу.
Так же как и в прошлом, криосфера, и, прежде всего горные ледники, является наиболее чувствительной частью глобальной климатической системы. В таблице 3 приведены следующие данные об уменьшении длины ледников (l ,м/год ), наблюдаемом начиная с конца прошлого века практически во всех районах земного шара.
Наиболее значительные изменения площадей горных ледников происходят в Центральной Европе, в Тропической Африке, Исландии и Азии. В Центральных Альпах объем ледников сократился на 10 – 20% в 1980 – 1990 гг. по сравнению с их объемами в 1970-е годы. Около половины ледников Исландии активно отступают в последние 20 – 25 лет. Площадь ледников Восточной Африки с начала века уменьшилась на 50 – 60%. В Средней Азии сокращение площадей горных ледников происходит быстрее, чем все известные сокращения за последние 12 тысяч лет[7].