Дипломная работа: Режим роботи та захист трансформаторів
На трансформаторах потужністю більше 7,5 Мв*а як основний захист встановлюється подовжній диференціальний струмовий захист. Принцип дії захисту аналогічний захисту ліній електропередачі. Проте особливості трансформатора як об'єкту захисту приводять до того, що Iнб в диференціальному захисті трансформатора значно більше, чим в диференціальних захистах інших елементів системи електропостачання. Основними чинниками, які необхідно враховувати при виконанні диференціального захисту трансформатора, є наступні.
Кидок струму намагнічення при включенні трансформатора під напругу або при відновленні напруги після відключення зовнішнього КЗ Струм намагнічення трансформатора (рис. 4, а) Iнам = I1п —I11п в нормальному режимі роботи невеликий і складає 2—3% номінального струму Iт,ном . Після відключення зовнішнього КЗ як і при включенні трансформатора під напругу, виникаючий кидок струму намагнічення може перевищувати номінальний струм Іт,ном в 6—8 разів.
Рис. 1.3 Зміна потоку і струму намагнічення при включенні трансформатора під напругу.
а — пояснююча схема; б — изменение струму намагнічення; у — зміни напруги і магнітного потоку; г — характеристика намагнічення.
Значення струму при кидку залежить від моменту включення трансформатора під напругу. Найбільше значення кидок струму намагнічення має при включенні трансформатора в мить, коли миттєве значення напруги U рівне нулю (Рис. 1.3, в, г). В цьому випадку магнітний потік Фt в сердечнику трансформатора в початковий період часу містить велику аперіодичну складову Фа і перевищує при перехідному процесі стале значення Фуст практично в 2 рази. Оскільки залежність Ф = f(Iнам ) нелінійна, то iнам збільшується по відношенню до сталого значення в сотні разів, але залишається зазвичай меншим максимальних перехідних струмів зовнішніх (крізних) КЗ Кидок струму намагнічення може містити велику що аперіодичну складає, а також значний відсоток вищих гармонік (перш за все другий). Загасання кидка відбувається повільніше, ніж струму КЗ В результаті крива кидка струму намагнічення Iнам,бр (рис. 1.3, б) може опинитися зміщеній по одну сторону осі часу.
Вказані характерні особливості кидка струму намагнічення використовуються для забезпечення отстроенности диференціального струмового захисту трансформатора, оскільки при настроєні захисту по струму спрацьовування вона має дуже низьку захистоздатність, а при настроєні за часом — втрачає швидкість спрацьовування.
Схеми з'єднання обмоток трансформатора. Якщо обмотки вищої і нижчої напруги трансформатора сполучені не по схемі Y/Y -12, а по якійсь іншій схемі, то між струмами фаз трансформатора на сторонах вищої і нижчої напруги існує фазове зрушення. Так, при широко поширеній схемі з'єднання обмоток трансформатораY-Dфазове зрушення складає I1п I11п = 30 эл. град. Тому при однакових схемах з'єднання вторинних обмоток груп 1ТТ і 2ТТ трансформаторів струму (на сторонах вищої і нижчої напруги) в диференціальному ланцюзі захисту при зовнішньому до. з, проходить значний струм, рівний приблизно половині вторинного струму ТТ при зовнішньому КЗ
Тому схеми з'єднання груп 1ТТ і 2ТТ повинні бути такими, щоб вказане зрушення по фазі отеутствовал (ÐI1п I11п = 0). При цьому можливі два варіанти: вторинні обмотки групи 1ТТ з'єднуються в трикутник, а групи 2ТТ — в зірку або вторинні обмотки групи 2ТТ — в трикутник, а 1ТТ — в зірку. Схема з'єднання обмоток ТТ в першому випадку ясна з Рис. 1.4. Перевага завжди віддається першому варіанту, оскільки з'єднання в трикутник вторинних обмоток ТТ, встановлених з боку зірки силового трансформатора, запобігає можливому неправильному спрацьовуванню диференціального захисту при зовнішніх однофазних КЗ (коли нейтраль трансформатора заземлена), оскільки з'єднання в трикутник запобігає попаданню струмів нульової послідовності в реле захисту. При з'єднанні вторинних обмоток1ТТ в трикутник струми в ланцюзі циркуляції від 1ТТ (I’1в ) в ÖЗ разів більше вторинних струмів 1ТТ (I1в ). Тому коефіцієнт трансформації 1ТТ вибирається рівним Iт Yном ЗÖ5, де Iт Yном — номінальний струм трансформатора з боку обмотки силового трансформатора, сполученої в зірку.
Рис. 1.4. Схема з'єднання ТТ диференціального струмового захисту трансформатора Y/-11 Dі векторні діаграми.
Невідповідність коефіцієнтів трансформації ТТ розрахунковим значенням. Для забезпечення рівності струмів в ланцюзі циркуляції повинне дотримуватися співвідношення
відповідно для трансформаторів із з'єднанням обмоток по схемі Y/Y і Y/D. Трансформатори струму, що випускаються промисловістю, мають дискретну шкалу коефіцієнтів трансформації. Тому в загальному випадку I’11в ¹I’1в що викликає додатковий струм небаланса в реле захисту.
Регулювання коефіцієнта трансформації трансформатора. При регулюванні коефіцієнта трансформації трансформатора співвідношення між первинними, а отже, і між вторинними струмами 1ТТ і 2ТТ змінюється, що також приводить до появи струму небаланса в диференціальному ланцюзі захисту. Відмінності типів ТТ, їх навантажень і кратностей струмів зовнішнього КЗТрансформатори струму ТТ диференціального захисту трансформатора встановлюються на сторонах трансформатора, що мають різну напругу, тому вони не можуть бути однаковими. Крім того, схеми з'єднання вторинних обмоток ТТ також різні, а отже, трансформатори струму мають різне навантаження. Різні у різних груп ТТ (особливо у разі триобмоткового трансформатора) і кратності струму зовнішнього КЗ по відношенню до їх номінальних струмів. Все це обумовлює різні погрішності у різних груп ТТ, що приводить до появи підвищених струмів небаланса в диференціальному ланцюзі захисту при зовнішніх КЗ
Розглянуті вище чинники обумовлюють застосування захистів різної складності КЗ використанням різних способів забезпечення їх защитоспособности і отстроенности. У простому випадку як РТД (рис,1.4) використовують звичайне реле струму без уповільнення (такий захист називають диференціальним відсіченням). Проте защитоспособность її мала через те, що захист виходить вельми грубим. Для підвищення чутливості застосовують реле і схеми, основні з яких (реле з проміжними трансформаторами, що насищаються, в диференціальному колі, реле з гальмуванням) були розглянуті стосовно подовжнього диференціального захисту ліній. У ряді випадків застосовуються і складніші принципи (особливо для забезпечення отстроенности захисту від кидків струму намагнічення трансформатора).
Найбільший (розрахунковий) струм небаланса в диференціальному ланцюзі захисту може мати місце при включенні трансформатора під напругу або при зовнішньому КЗ Тому струм небаланса повинен визначатися в обох випадках.
При включенні трансформатора під напругу значення кидка струму намагнічення Iбр.нам , що діє, в перший період рівне (6—8)Iт,ном . де Iт,ном — номінальний струм трансформатора.
При зовнішньому КЗ, що супроводжується проходженням через ТТ захисту найбільших струмів КЗ, струм небаланса
Iнб = I'нб + I"нб + I"’нб (1)
де I'нб I"нб I"’нб — струми небаланса, обумовлені відповідно погрішностями ТТ, регулюванням коефіцієнта трансформації трансформатора і нерівністю струмів в ланцюзі циркуляції від різних груп Тт.
Розкриваючи виразу для окремих складових струму небаланса (1), можна записати:
Iнб,расч = (kодн kапер e + DU*рег + Dfвыр )Iк,ве,max (2)
де kодн = 1—коэффициент однотипності; капер — коефіцієнт, що враховує наявність аперіодичної складової в первинному струмі ТТ при зовнішньому КЗ; e = 0,1 — допустимая відносна погрішність ТТ; DU*рег = Uрег /Uном — відносний діапазон зміни напруги на вторинній стороні трансформатора при регулюванні коефіцієнта трансформації під навантаженням пристроєм РПН; Dfв и р = (I’1в - I’11в ) I’1в — відносне значення струму небаланса в диференціальному ланцюзі захисту, обумовлене невідповідністю розрахункових і фактичних коефіцієнтів трансформації ТТ.
Значення коефіцієнта капер в (2) і коефіцієнта, що враховує настроєння від кидка струму намагнічення,, вибираються різними залежно від типу вживаного РТД. Так, для диференціального відсічення струм спрацьовування визначається як
Iс,з = kотс Iбр,нам ;(3)
Iс,з = kотс Iнб,расч .(4)
При цьому в (4) kотс » 2, а вираз (3) з урахуванням деякого загасання перехідного значення Iбр,нам протягом власного часу спрацьовування електромеханічного реле приймає вигляд:
Iс,з = (3.5¸4.5) Iт,ном (5)