Дипломная работа: Розробка цифрових засобів ПЛІС в інтегрованому середовищі проектування MAX+PLUS II

LAB – Logic Array Block;

LE – Logic Element;

MAX – Multiple Array Matrix;

PLA – Programmable Logic Array;

PLD – Programmable Logic Devices;

PLS – Programmable Logic Sequencers;

PROM – Programmable Read Only Memory;

SPLD – Standart Programmable Logic Devices.

Вступ

Широке впровадження електроніки й автоматики в усі сфери людської діяльності, що спостерігається в даний час, пред'являє все більш жорсткі вимоги до виробів електронної техніки. Це пов'язано, з одного боку, зі зростанням важливості і складності розв'язуваних задач, а, з іншого боку, необхідністю поліпшення таких характеристик, як швидкодія, надійність, споживана потужність, габарити, вартість та інше. Одним з шляхів вирішення даної проблеми є широке використання програмувальних логічних інтегральних схем (ПЛІС - Programmable Logic Devices - PLDs).

ПЛІС являють собою нову елементну базу, що володіє гнучкістю замовлених ВІС і доступністю традиційної "твердої" логіки.

Головною відмітною властивістю ПЛІС, на відміну від “жорсткої” логіки, є можливість настроювання на виконання заданих функцій самим користувачем. Сучасні ПЛІС характеризуються низькою вартістю, високою швидкодією, значними функціональними можливостями, багаторазовістю перепрограмування, низкою споживаною потужністю й інше.

При цьому час розробки на основі ПЛІС навіть досить складних проектів може складати усього кілька годин. Власно кажучи, розробка пристроїв на основі ПЛІС являє собою нову технологію проектування електронних схем, включаючи їх виготовлення і супроводження. Доказом перспективності нової елементної бази служить щорічна поява нових поколінь ПЛІС, а також постійно зростаючий обсяг випуску вже розроблених ПЛІС.

Істотною перешкодою широкого практичного використання ПЛІС є відсутність ефективних методів синтезу. Справа в тому, що в основу архітектури сучасних ПЛІС покладена структура програмувальних логічних матриць (ПЛМ — Programmable Array Logics — PALs), що являє собою пари матриць: І й АБО, у якій програмується матриця І, а матриця АБО має фіксоване положення. Методи й алгоритми синтезу на такій структурі одержали назву двухуровнего синтезу і бурхливо розвивалися в 80-х роках. З часом інтерес дослідників на багато років залучив багаторівневий синтез, використовуваний при проектуванні цифрових систем на основі FPGA (Field Programmable Gate Array).

В останні роки спостерігається явне протиріччя: архітектури ПЛІС бурхливо розвиваються й удосконалюються, а методи проектування на їх основі залишаються без зміни.

Інтегроване середовище MAX+PLUS II фірми Altera пропонує повний спектр можливостей логічного дизайну: різноманітні засоби опису проектів з ієрархічною структурою, потужний логічний синтез, компіляцію з заданими часовими параметрами, розподілення на підпрограми основного проекту, функціональне і часове тестування (симуляцію), тестування декількох взаємопов’язаних властивостей, аналіз часових параметрів системи, автоматичну локалізацію помилок, а також програмування і верифікацію помилок.

Відносно низьку популярність даного інтегрованого середовища серед вітчизняних проектувальників можливо пояснити відсутністю детальної та ємної документації українською мовою про можливості та властивості MAX+PLUS II. Ліквідацію саме такого інформаційного браку і було взято автором за стратегічну мету написання дипломної роботи.

Для спрощення розуміння читачем структурної організації і функціонального призначення додатків інтегрованого середовища в роботі наведено генезис програмувальних логічних інтегральних схем, їх класифікація, архітектура, детально розписана процедура створення нового проекту і процес його компіляції.

В дипломній роботі наведено приклади опису в інтегрованому середовищі MAX+PLUS II всіх базових пристроїв мікроелектроніки, як то:

1) JK-тригера, D-тригера, RS-тригера;

2) послідовних регістрів зсуву, паралельних кільцевих регістра зсуву;

3) лічильників з крізним переносом, асинхронних лічильників, лічильників віднімання, універсального лічильника;

4) шифраторів, дешифраторів, мультиплексорів, демультиплексорів (з використанням функцій алгебри логіки і таблиць дійсності);

5) суматорів, віднімачів.


1. Генезис програмувальних логічних інтегральних схем, їх класифікація та архітектура

Історія розвитку програмувальних логічних інтегральних схем (ПЛІС) або програмувальних логічних пристроїв (ПЛП - Programmable Logic Devices - PLD) починається з появи на початку 70-х років програмувальних постійних запам'ятовуючих пристроїв (ППЗП - Programmable Read Only Memory - PROM). Перший час програмувальні постійні запам’ятовуючі пристрої використовувалися винятково для збереження даних, пізніше їх стали застосовувати для реалізації логічних функцій. Однак, необхідність приведення логічних функцій до завершеної диз’юнктивної нормальної форми не дозволяло використовувати PROM для реалізації функцій великих розмірів.

Спеціально для реалізації систем булєвих функцій (СБФ) великого числа змінних були розроблені і з 1971 р. стали випускатися промисловістю програмувальні логічні матриці (ПЛМ - Programmable Logic Arrays - PLAs). PLA дуже широко розповсюджені в якості універсальної елементної бази цифрових пристроїв, тому саме PLA можна вважати першими PLD.

Удосконалювання архітектури PLA призвело до появи програмувальних матриць логіки (ПЛМ - Programmable Array Logics - PALs), що дотепер визначають найбільш популярну архітектуру PLD. Перші PAL були розроблені фірмою Monolithic Memories у 1976 році, а вироблятися вони почали з 1977 року фірмою Advanced Micro Devices (AMD). З моменту своєї появи PAL стали успішно конкурувати з PLA і в даний час завдяки ряду позитивних властивостей практично цілком замінили програмувальні користувачем PLA.

Подальше удосконалювання технології виробництва інтегральних схем на початку 90-х років призвело до можливості реалізації на одному кристалі декількох PAL, поєднуваних програмувальними з'єднаннями. Подібні архітектури одержали назва складних ПЛП (Сomplex PLD - CPLD), відповідно всі розроблені раніше PLD стали називати стандартними ПЛУ (Standart PLD - SPLD) або класичними ПЛУ (Classic PLD).

Паралельно з PLD також розвивалися архітектури вентильних матриць (Gate Array - GA) і матриць логічних осередків (Logic Cell Array - LCA), у російськомовній літературі вони отримали назву базових матричних кристалів (БМК). Перші вентильні матриці були напівзамовленими, тобто програмувалися під час виготовлення, що стримувало їх широке практичне використання. Однак у 1985 році фірма Xilinix випустила програмовану користувачем вентильну матрицю (Field Programmable Gate Array — FPGA). Це дало сильний поштовх до широкого поширення вентильних матриць і конкуренції їх з PLD. Хоча FPGA і не є предметом дослідження даної роботи, згадування про них необхідно для порівняльного аналізу архітектур CPLD і FPGA.

В даний час спостерігається бурхливий розвиток архітектур CPLD і FPGA, зниження їхньої вартості, підвищення швидкодії і функціональної потужності (табл. 1.1). Це дозволяє припустити, що в найближчі п'ять років основу елементної бази цифрових систем будуть складати CPLD і FPGA.

К-во Просмотров: 306
Бесплатно скачать Дипломная работа: Розробка цифрових засобів ПЛІС в інтегрованому середовищі проектування MAX+PLUS II