Дипломная работа: Широкополосные беспроводные сети передачи информации

Пожарные службы

Спасательные бригады

Инкассаторы

Частные лица

Частный автотранспорт

Редкие и дорогостоящие животные

1.3 Цели и задачи работы

Целью данной работы является разработка широкополосной системы передачи телеметрической информации от специальных объектов.

На практике данная схема построения сети может быть использована в различных отраслях народного хозяйства: в медицине – передача информации от машин скорой помощи в госпиталь, в правоохранительных органах – слежение за подвижными объектами с возможностью документирования событий; организации связи при стихийных бедствиях, дистанционного контроля за объектами (передача телевизионного сигнала, передача кодов управления на различное оборудование – например на камеры лимба и объекта при отслеживании траектории полёта ракет-носителей в космонавтике); установка всевозможных датчиков (в том числе мобильных – к примеру, специальные браслеты для детей), смонтированных в общую систему оповещения;

Аппаратная реализация основана на использовании беспроводных систем передачи информации, так называемые mesh-сети, т. е. самоорганизующиеся ячеечные сети беспроводной передачи данных, полоса пропускания в которых может обеспечивать гарантированное качество канала и высокую скорость передачи.


Раздел 2. Расчетно-теоретический раздел

2.1 Организация цифровых широкополосных сетей

В сетях радиопередач используются как узконаправленные антенны, так и антенны с более широким сектором охвата, вплоть до всенаправленных (круговых). Для соединения типа точка-точка используются две нацеленные друг на друга (узко)направленные антенны; так строятся, например, радиорелейные линии передач, в которых расстояние между соседними релейными вышками может исчисляться десятками километров. Узконаправленная антенна фокусирует радиолуч, увеличивая плотность его энергии; таким образом передатчик данной мощности "простреливает" на большее расстояние [7].

Другой тип связи получится при использовании только всенаправленных антенн. В этом случае будет достигнута возможность соединения каждого с каждым. Такую топологию имеют обычно небольшие учрежденческие сети, развернутые на ограниченной территории.

Наконец, если в центре "ячейки" поместить базовую станцию (БС) со всенаправленной антенной и снабдить всех обслуживаемых ею абонентов сфокусированными на нее направленными антеннами, то получим топологию "точка-многоточка". Если еще соединить между собой базовые станции в некоторой иерархии (либо радиорелейными линиями или просто радио-соединениями по типу "точка-точка", либо кабельными каналами), то получим уже целую сотовую сеть [8, 9].

По этому принципу строятся системы беспроводного широкополосного доступа (БШД) [10-12]. В центре зоны обслуживания устанавливается БС с секторными антеннами, а на удаленных площадках - абонентские терминалы с направленными антеннами (рис.2.1). Для работы сервисов реального времени, передачи трафика голоса и видео современные системы БШД поддерживают качество обслуживания с выделением гарантированной полосы пропускания.

Пропускная способность такой сети, распределяемая между абонентскими терминалами, обслуживаемыми одним сектором БС, будет зависеть от числа терминалов. Эффективная производительность одного сектора БС известных производителей БШД лежит в пределах 10-43 Мбит/с, чего вполне достаточно для организации большинства инфокоммуникационных сервисов.

Рис. 2.1 Схема организации каналов связи для объединения сетей удаленных площадок

В данном случае это будет фиксированная сотовая сеть, так как мобильный абонент не может иметь направленную антенну.

Мобильная сотовая сеть строится по тому же принципу, но с использованием ненаправленных антенн также и у мобильных абонентов, которые не мешают при этом друг другу, потому, что говорят всегда на разных каналах (или чередуясь на одном и том же канале), и потому, что сигнал от мобильного аппарата гораздо слабее сигнала от БС и может быть правильно принят только БС, но не другим мобильным аппаратом.

Для решения задач по обеспечению непрерывного информационного взаимодействия между множеством мобильных и фиксированных объектов, рассредоточенных на большой площади, была создана технология MESH сетей. В сегодняшнем понимании беспроводная MESH сеть – это сеть доступа, построенная на оборудовании стандарта 802.11 (Wi-Fi) по принципу избыточных магистральных связей между соседними точками доступа (ТД), поддерживающая механизмы адаптивной динамической маршрутизации трафика по транспортным каналам.

Территория обслуживания сети разбивается на узловые зоны. В каждой из них имеется узловая ТД, подключаемая к опорной проводной сети при помощи магистрального канала – проводного (медь, оптика) или беспроводного (РРЛ, БШД). Узловая зона делится на квадраты, обслуживаемые периферийными ТД, связанными с узловой ТД и соседними периферийными ТД беспроводными транспортными каналами. Пример реализации узловой зоны на оборудовании компании Cisco Systems приведен на рис. 4 [13].

ТД Cisco Aironet 1500 работают в двух диапазонах: 802.11a и 802.11b/g. В диапазоне 802.11a осуществляются "транспортные" соединения между ТД, а в диапазоне 802.11b/g происходит подключение беспроводных клиентов. Данная архитектура позволяет быстро развертывать такие сети с сохранением полосы пропускания.

Использование фирменного протокола маршрутизации Adaptive Wireless Path Protocol, поддержка QOS (802.11e) и виртуальных сетей 802.1q позволяет еще больше оптимизировать полосу пропускания. Кроме того, ТД Cisco Aironet поставляются во "внешнем" корпусе, соответствующем стандарту NEMA-4, и могут работать в диапазоне температур от -30° до +55°C.

Решения MESH позволяет операторам в реальном масштабе времени осуществлять мониторинг местонахождения Wi-Fi устройств - например, шагающих экскаваторов, карьерных грузовиков и другой тяжелой техники.

Рис. 2.2 Пример реализации сегмента Mesh сети на базе оборудования Cisco Systems

К-во Просмотров: 413
Бесплатно скачать Дипломная работа: Широкополосные беспроводные сети передачи информации