Дипломная работа: Синхронный генератор
8.4 Сопротивления для токов обратной и нулевой последовательности
8.5 Постоянные времени обмоток
9. Потери и КПД
10. Характеристики машин
10.1 Отношение короткого замыкания
11. Тепловой расчет синхронной машины
11.1 Обмотка статора
11.2 Обмотка возбуждения
11.3 Вентиляционный расчет
12. Масса и динамический момент инерции
12.1 Масса
12.2 Динамический момент инерции ротора
13. Механический расчет вала
Литература
Введение
Синхронные генераторы применяются в передвижных и стационарных электрических станциях. Наиболее распространена конструктивная схема генераторов с вращающимся ротором, на котором расположены явновыраженные полюса. Генераторы серии СГ2 изготавливаются мощностью от132 до 1000 кВт при высоте оси вращения до 450 мм, в защищенном исполнении IP23, с самовентиляцией IC01, с частотой вращения от 500 до 1500 об/мин.
В журнале “Электричество” №8 2004г. ученым Ороняным Р. В. предложен метод, позволяющий с достаточной для инженерных расчетов точностью вычислять значение экстремальных отклонений напряжений автономного синхронного генератора при сбросе - набросе нагрузки. Зная экстремальные изменения напряжения, можно с помощью полученных в статье формул рассчитать значение индуктивных сопротивлений по поперечной оси генератора хq и x’q ..
В журнале “Электричество” №10 2004г. ученым Джендубаевым А.-З.Р представлена математическая модель позволяющая исследовать динамические и статические режимы асинхронного генератора с учетом потерь в стали статора и фазного ротора. В широком диапазоне изменения скольжения учет потерь а стали фазного ротора повышает точность расчета.
В обзоре докладов 23 сессии СИГРЭ (1970) рассматривается актуальные вопросы создания и работы синхронных генераторов большой мощности и их систем возбуждения.
В книге Абрамова А. И. “Синхронные генераторы” рассмотрены основные свойства и поведение синхронных генераторов при различных режимах работы, возникающих во время эксплуатации. Даны требования к системам возбуждения и показана необходимость введения форсировки возбуждения не всех синхронных машинах в целях повышения устойчивости работы энергосистемы. Рассмотрены вопросы нагрева обмоток при установившихся режимах и при форсировках возбуждения. Подробно рассмотрен асинхронный режим работы генераторов включая вопросы асинхронного пуска, даны методы расчета и приведены опытные данные.
1. Исходные данные
Данные для проектирования
Назначение | Генератор |
Номинальный режим работы | Продолжительный |
Номинальная отдаваемая мощность Р2 , кВт | 30 |
Количество фаз статора m1 | 3 |
Способ соединения фаз статора | Y |
Частота напряжения f, Гц | 50 |
Коэффициент мощности cos φ | 0,8 |
Номинальное линейное напряжение Uл , В | 400 |
Частота вращения n1 , об/мин | 1500 |
Способ возбуждения | От спец. обмотки |
Степень защиты от внешних воздействий | IP23 |
Способ охлаждения | IC01 |
2. Магнитная цепь машины. Размеры, конфигурация, материалы
2.1 Конфигурация
Принимаем изоляцию класса нагревостойкости F
Количество пар полюсов (9/1)
р=60f/n1 =60∙50/1500=2
Индуктивное сопротивление рассеяния обмотки статора (рисунок 11.1)
хσ* =0,08 о.е.