Дипломная работа: Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска

На следующей стадии радикал быстро взаимодействует с кислородом, который выступает в качестве акцептора электронов. В результате происходит образование пероксирадикала (R О2 ), который атакует ненасыщенные липиды. Возникновение в результате этой реакции органических перекисей и нового радикала (R ) способствует продолжению окислительных реакций, приобретающих цепной характер:

R + О2 2

Органические перекиси (R ООН ) включаются в процесс генерации радикалов, в присутствии металлов переменной валентности (меди, кобальта, марганца, железа) происходит образование реакционного алкоксильного радикала:

Часть образующихся органических радикалов взаимодействует друг с другом, при этом происходит образование неактивных молекул, что обрывает ход реакций свободнорадикального окисления. Гидроперекиси липидов способны подвергаться нерадикальным окислительным превращениям, что приводит к образованию первичных (диеновые коньюгаты, диальдегиды), промежуточных (основания Шиффа) и конечных продуктов ПОЛ, а также спиртов, кетонов и альдегидов. Обрыв цепных реакций перекисного окисления возможен при взаимодействии радикалов со специализированными ферментными системами, а также с рядом низкомолекулярных веществ, совокупно формирующих биохимический компонент антиоксидантной системы организма [Меньщикова с соавт., 2006].

Одним из конечных продуктов ПОЛ является насыщенные низкомолекулярные углеводороды (этан, гексан, пентан), которые в нормальных условиях переходят в газообразное состояние.

Идентифицировано более 20 типов окислительных повреждений молекул нуклеиновых кислот: различные повреждение оснований, возникновение одно- и двух цепочечных разрывов, сшивок и хромосомных аберраций. Прямое действие и на ДНК не вызывает повреждения оснований или образования сшивок между основаниями. Основным повреждающим агентом выступает OH-радикал, который эффективно взаимодействует с дезоксирибозой, пуриновыми и пиримидиновыми основаниями. Синглетный кислород более специфично, чем , взаимодействует с гуанином. Перексинитрит вызывает нитрозилирование и дезаминирование аминогрупп в основаниях ДНК, при этом 8-нитрогуанин является индикатором повреждающего действия пероксинитрита. В условиях окислительного стресса в наибольшей степени повреждается ДНК митохондрий, что связано с низкой активностью систем репарации и низким содержание гистоновых белков, оказывающие защитное действие [Зенков, Менщикова, Шергин, 1993].

1.3. Характеристика антиоксидантной системы

В процессе эволюции в клетках для защиты от АФК выработались специализированные системы: ферментативная антиоксидантная система (АОС) и неферментативная АОС. В качестве неферментативной АОС могут выступать: жирорастворимые антиоксиданты (витамин Е, β-каротин, убихиноны) [Абрамова, 2004], водорастворимые (аскорбат, рутин, глутатион). Гидрофобные антиоксиданты локализованы в биомембраннах, гидрофильные - в цитозоле клетки.

Ферментативная АОС включает: супероксиддисмутазу (SОD), катализирующую реакцию дисмутации О2 ˉ в Н2 О2 , каталазу (CАТ), разлагающей Н2 О2 , глутатионпероксидазу (GPO), глутатион-S- трансферазу (GSТ), глюкозо-6-фосфатдегидрогеназу (G6FD), глутатионредуктазу (GR), глутатионзависимые ферменты удаляют органические перекиси [Брискин, Рыбаков 2000].

Супероксиддисмутаза имеет несколько изоферментных форм, различающихся строением активного центра. Медь-цинковая форма чувствительна к цианиду и содержится в цитозоле и межмембранном пространстве митохондрий клеток эукариот, марганецсодержащая форма локализована в митохондриях клеток эукариот, а так же бактерий, экстрацеллюлярная высокомолекулярная форма SOD (Э-SOD) [Биленко,1999]. Э-SOD обладает высоким сродством к гепарину и хорошо связывается с гепаринсульфатом гликокаликса эндотелиоцитов. Нативная форма SOD выдерживает нагревание при 100º С в течение одной минуты, устойчив к колебаниям значений pН в широком диапазоне. SOD существенно ускоряет реакцию дисмутации О2 ˉ , обрывая тем самым опасную цепь свободнорадикальных превращений кислорода:

О2 ˉ + О2 ˉ → H 2 O 2 + O 2

HO + HO . H 2 O 2 + O 2

HO . 2 + Н+ H 2 O 2 + O 2

В определенных условиях медьсодержащая форма SOD может взаимодействовать с перекисью водорода и выступать в качестве прооксиданта, инициируя образование радикалов – супероксида и гидроксила:

Cu 2+ -СОД + H 2 O 2 ←→ Cu + -СОД + 2Н+ + О2 ˉ

Cu + -СОД + H 2 O 2 ←→ Cu 2+ -СОД + ОН. + ОН+

СОД играет важную роль в защите клеток от действия супероксид-анион радикала, стабилизирует клеточные мембраны, предотвращая процессы ПОЛ, снижая уровень О2 ˉ , она защищает от его дезактивирующего действия CAT и GPO [Александров,2007].

Регулирующее влияние на активность SOD оказывают глутатион, цистеин, другие SH-содержащие соединения, а также опосредованно ферменты глутатионового обмена [Зенков, Меньщикова, 2004].

Каталаза – фермент, участвующий в детоксикации нерадикальной активной формы кислорода – Н2 О2 . Эта гемсодержащий фермент, локализованный преимущественно в пероксисомах клеток. Большая молекулярная масса фермента препятствует его проникновению через клеточную мембрану [Биленко, 1999]. Разложение Н2 О2 каталазой осуществляется в два этапа.

CAT + Н2 О2 → CAT - Н2 О2

CAT - Н2 О2 + Н2 О2 → CAT + 2Н2 О + О2

При этом в окисленном состоянии каталаза работает и как пероксидаза, катализируя окисление спиртов или альдегидов:

CАТ - Н2 О2 + > CHOH → CАТ + 2Н2 О + > C = O

Каталаза ингибируется азидом, цианидом, пероксидом водорода в высоких концентрациях и некоторыми органическими гидроперекисями. Каталаза может выступать источником образования АФК. 0,5% кислорода, образующегося в результате разложений перекиси водорода, возникает в возбужденном синглетном состоянии.

Глутатионпероксидаза – фермент, служащий для инактивации перекиси водорода в клетках высших животных. GPO– гликопротеин, имеющий в активном центре четыре атома селена. Он является гидрофильным соединением, что затрудняет его проникновение в липидный слой мембран, основная часть фермента локализована в цитозоле, а остальная – в митохондриях. GPO имеет селеновые изоферменты: внеклеточное GPO, обнаруженная в плазме и молоке, GPO– G1, выделенная из цитозоля клеток печени и кишечника, а также неселеновый изофермент, идентичный GSТ.

К-во Просмотров: 195
Бесплатно скачать Дипломная работа: Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска