Дипломная работа: Совершенствование технологии химической водоочистки на Балаковской атомной электростанции с использованием полимерных ионообменных материалов
3. Способ рециркулирования катализатора на реакцию окисления органического соединения, протекающего в присутствии катализатора, содержащего металлические элементы, в том числе ванадий, заключающийся в том, что раствор, содержащий катализатор и полученный после отделения по крайней мере соединений, образующихся после окисления, обрабатывают ионообменной смолой, содержащей группы дифосфоновой кислоты, для связывания железа, находящегося в этом растворе, и таким образом обедненный железом раствор рециркулируют на реакцию окисления в качестве каталитического раствора.
1. Способ по п. 5, отличающийся тем, что ионообменная смола содержит сульфонильные группы.
2. Способ по п. 5 или 6, отличающийся тем, что реакцию окисления проводят с использованием в качестве окисляющего агента соединения, выбираемого из группы, включающей кислород, воздух, пероксиды, перекись водорода, азотную кислоту.
3. Способ по одному из пп. 5–7, отличающийся тем, что реакцией окисления является реакция окисления спиртов и / или кетонов до карбоновых кислот.
4. Способ получения адипиновой кислоты окислением циклогексанола и / или циклогексанона в присутствии катализатора на основе металлических элементов, отличающийся тем, что он состоит в обработке раствора, образующегося в процессе окисления и содержащего катализатор, после отделения образовавшейся адипиновой кислоты с помощью ионообменной смолы, содержащей дифосфоновые группы, с целью понижения в этом растворе содержания железа и повторного использования этого раствора с пониженным содержанием железа в качестве катализатора реакции окисления.
5. Способ по п. 9, отличающийся тем, что катализатором окисления является катализатор на основе меди и ванадия.
6. Способ по п. 9 или 10, отличающийся тем, что содержащий катализатор раствор является раствором азотной кислоты, получаемым при элюировании ионообменной смолы, которая позволяет отделить ионы металлов от карбоновых кислот, образующихся в качестве побочных продуктов реакции окисления циклогексанола и / или циклогексанона до адипиновой кислоты.
7. Способ по любому из пп. 9–11, отличающийся тем, что ионообменную смолу, содержащую группы дифосфоновой кислоты, регенерируют кислотным раствором.
8. Способ по п. 12, отличающийся тем, что регенерацию смолы проводят с помощью кислоты, отличной от азотной, после чего эту регенерированную смолу перед ее повторном использованием кондиционируют раствором азотной кислоты или промывкой водой.
1.3 Характеристика исходного сырья, вспомогательных материалов и готовой продукции
Вода – самое распространенное химическое соединение. Угол связи в молекуле воды НОН равен 1050 ; межъядерное расстояние О ↔ Н составляет 0,97 А0 ; Н ↔ Н – 1,63 А0 дипольный момент равен 1,87х 10-18 эл. ст. ед. Сильный дипольный характер молекул воды обуславливает особую склонность воды образовывать продукты присоединения.
Химически чистая вода является очень слабым электролитом и диссоциирует на ионы Н+ и ОН- в незначительном количестве Н2 О ↔ Н+ +ОН- Вода может проявлять и кислые и основные свойства. Одним из основных показателей качества воды является водородный показатель. Растворы, в которых концентрация водородных и гидроксильных ионов одинаковы и каждая из них равна 10-7 г– ион /кг называется нейтральными. В кислых растворах преобладает концентрация водородных ионов, в щелочных – гидроксильных, то есть степень кислотности или щелочности можно характеризовать концентрацией водородных ионов. Для выражения кислотности или щелочности пользуется водородным показателем.
Являясь слабым электролитом, вода способна проводить электрический ток. Удельная электропроводимость водорода характеризует содержание в воде различных примесей, находящихся в ионном состоянии и зависит от температуры.
Другим показателем, характеризующим свойства водных растворов является окислительно-восстановительный потенциал. Он характеризует окислительно-восстановительное равновесие в водном теплоносители, влияет на ряд процессов, в частности на режим образования и растворение оксидной пленки (или железо-окисных отложений) при постоянном значении рН. Абсолютно чистой воды практически не существует. Вода является различных веществ неорганического и органического характера, которые попадают в тракт электростанции и создают среду, оказывающую влияние на работу элементов оборудования.
Наличие в воде различных примесей может приводить к образованию в тепловых агрегатах накипных отложений и коррозии.
Исходной водой для ХВО является вода Саратовского водохранилища. На ХВО вода поступает из насосной пруда охладителя, стоящей на реке Березовка.
Таблица 1.3.1. Химический состав исходной воды с реки Березовка
Параметры | Концентрация, | Параметры | Концентрация, мг/л |
рН, ед. | 7,66 | нитриты | 1,3 |
щелочность, мг-экв/л | 2,55 | оксид кремния | 0,98 |
хлориды, мг/ л | 5,5 | солесодержание | 479,95 |
сульфаты, мг/л | 125,0 | окисляемость | 6,08 |
жесткость кальциевая, мг – экв/л | 2,6 | Цинк | - |
жесткость магнивая, мг – экв/л | 1,4 | Фосфаты | 0,05 |
жесткость общая мг-экв/л | 4,0 | взвешенные вещества | 4,0 |
железо, мг/л | 0,39 | нефтепродукты | < 0,05 |
медь, мг/л | 0,0091 | нитраты | 0,11 |
натрий, мг/л | 77,0 | калий, мг/л | 4,0 |
В режиме обессоливания достигается следующее качество обессоленной воды:
1) удельная электропроводимость Н-катионитовой пробы (при температуре 250 С);
2) соединения натрия – 5 мкг/кг (в пересчете на натрий);
3) кремниевая кислота – 15 мкг/кг (в пересчете кремниевой кислоты);
4) соединения железа – 15 мкг/кг (в пересчете на железо);
5) соединения меди –5 мкг/кг (в пересчете на медь).
Вспомогательные материалы.
В качестве фильтрующего материала во всех ионообменных фильтрах используются ионообменные смолы: катиониты и аниониты. Они представляют собой высокомолекулярные органические вещества трехмерной структуры, практически нерастворимые в воде и обратимо обменивающие ионы, входящие в их состав, на эквивалентное количество других ионов того же знака, находящиеся в растворе. При существенных различиях в химическом составе и структуре для всех ионитов характерен один и тот же принцип построения: они имеют каркас, несущий избыточный заряд, и подвижные противоионы. У ионообменных смол каркас, называемый матрицей, состоит из высокополимерной пространственной сетки углеводородных цепей в отдельных местах, которой закреплены функционально-активные гидрофильные группы. Между углеводородными цепями есть поперечные связи (мостики), препятствующие разъединению цепей, но допускающие их деформацию.
С течением времени в слое работающего материала в результате его постепенного разрушения может накапливаться все больше и больше мелкой фракции, от которой слой ионита частично освобождается при взрыхлении. Основной причиной разрушения товарных фракций ионитов являются знакопеременные напряжения, возникающие в зерне ионита при его работе. В рабочем цикле зерна ионитов сжимаются. При проведении регенерации зерна ионитов расширяются. И набухание, и сжатие происходят под действием осматического давления воды. Это в свою очередь приводит к появлению в зерне микротрещин, которые в конечном результате приводят к раскалыванию зерна ионита. К раскалыванию треснувшего зерна ведут также и механические нагрузки, происходящие в процессе трения зерен друг о друга или о стенки аппаратов или трубопроводов, а также имеющие место при взрыхлении или гидравлических перегрузках ионитов.
Способность ионитов сохранять неизменным товарный фракционный состав принято характеризовать двумя показателями: осмотической стабильностью и механической прочностью. Оба эти показателя являются крайне важными, поскольку измельчение ионитов и последующий постоянный вынос мелких фракций при взрыхлении слоя сокращают срок их использования и повышают стоимость очищаемой воды.
Способность к ионному обмену обусловлена наличием в ионитах функциональных групп. У катионов эти группы носят кислотный характер, у анионитов – основной. По сродству функциональных групп катионы и анионы делятся на сильные и слабые. Катионы, содержащие сульфогруппы, являются сильнокислотными, называются универсальными и маркируются буквами КУ. Катиониты, содержащие карбоксильные группы, являются слабокислотными, называются буферными и маркируются буквами КБ. Сильнокислотные катиониты осуществляют обмен ионов в широкой области значений рН, тогда как слабокислотные в кислой области резко уменьшают способность ионов к обмену. Анионы, содержащие аминогруппы, являются слабоосновными и маркируются буквами АВ. Слабоосновные аниониты успешно осуществляют ионный обмен лишь в кислых средах, тогда как у высокоосновных обмен анионов происходит в широкой области значений рН.
1.4 Описание технологического процесса