Дипломная работа: Суточный ритм мышечной силы кисти у хоккеистов

Мышечное сокращение является наиболее совершенной формой биологической подвижности. Изучение работы мышц занимает одно из ведущих мест в биохимии спорта.

Для достижения высоких результатов в спорте, для повышения эффективности управления подготовкой спортсменов необходимо знать, как изменяются различные физиологические показатели в течение суток у человека и в частности его работоспособность.

Объект исследования – работоспособность человека на примере мышечной силы кисти.

Предмет исследования – изменение мышечной силы кисти в течение суток у хоккеистов.

Цель исследования – проанализировать суточную динамику мышечной силы кисти у хоккеистов и сравнить с суточным ритмом мышечной силы кисти у студентов, которые не занимаются спортом.

Задачи исследования:

1. Дать характеристику суточной динамики мышечной силы кисти (справа и слева) у хоккеистов.

2. Проследить динамику суточного ритма мышечной силы кисти у студентов ТГМА.

3. Выявить закономерность изменения амплитуды суточного ритма мышечной силы кисти у хоккеистов и у студентов ТГМА.

Рабочая гипотеза нашего исследования состояла в предположении, что мышечная сила (справа и слева) закономерно изменяется в различные часы суток, а также то, что суточная динамика мышечной силы кисти у спортсменов более выражена, чем у студентов, которые не занимаются спортом.

Теоретическое значение работы состоит в том, что работа доказывает наличие существенных изменений в суточном ритме мышечной силы кисти у лиц, занимающихся и не занимающихся спортом.


Глава 1. Обзор литературы. Характеристика суточного ритма работоспособности человека

1.1 Характеристика мышечного сокращения

Основная функция мышцы заключается в развитии напряжения и укорочения. Эта функция, названная сократительной, обеспечивает разнообразную деятельность организма. Мышца является сложным молекулярным двигателем, способным преобразовывать химическую энергию непосредственно в механическую работу, минуя промежуточные превращения. Вследствие этого потери энергии сравнительно невелики, мышца обладает высоким коэффициентом полезного действия (от 30 до 50%). Во время мышечного сокращения в мышце протекают разнообразные процессы: синхронное изменение проницаемости мембран и работы «ионных насосов», последовательное изменение активности ферментов, скорости процессов энергообеспечения, электростатических взаимодействий, структурная перестройка мышечных волокон. Энергия при сокращении расходуется на изменение характера взаимосвязей сократительных белков мышц и их взаимного расположения. У животных и человека имеется два основных типа мышц: поперечнополосатые и гладкие. Поперечнополосатые мышцы прикреплены к костям и поэтому называются скелетными. Наибольший интерес для биохимии спорта представляют скелетные мышцы. Структурной единицей мышцы является мышечное волокно. Мышечное волокно представляет собой одну гигантскую клетку, а точнее, бесклеточное образование – симпласт. Оно окружено оболочкой – сарколеммой, на поверхности которой располагаются окончания двигательных нервов. Миофибриллы (мышечные нити) являются сократительными элементами мышцы. В нетренированных мышцах миофибриллы располагаются рассеянно, а в тренированных сгруппированы в пучки. Сократительными белками мышц являются миозин и актин. При мышечном сокращении происходит повторяющееся образование и разрушение спаек между «головками» миозиновых молекул толстых протофибрилл и активными центрами тонких протофибрилл. Гипотеза мышечного сокращения предполагает, что в момент сокращения происходит только скольжение актиновых нитей вдоль миозиновых, однако некоторые экспериментальные данные указывают и на укорочение нитей. Это может быть связано с изменением во время сокращения пространственной структуры сократительных белков(21).

Непосредственным источником энергии для мышечной деятельности служит реакция расщепления АТФ. Запасов АТФ в мышце обычно хватает на 3-4 одиночных сокращения максимальной силы. В то же время, как показывают исследования с использованием микробиопсии мышц, в процессе мышечной работы не наблюдается значительного снижения концентрации АТФ. Это объясняется тем, что по ходу мышечной деятельности АТФ восстанавливается из продуктов распада (ресинтезируется) с той же скоростью, с какой она расщепляется в процессе мышечных сокращений. Ресинтез АТФ при мышечной деятельности может осуществляться как в ходе реакций, идущих без кислорода, так и за счет окислительных превращений в клетках, связанных с потреблением кислорода (6).

1.2 Потребление кислорода при мышечной работе

При переходе от состояния покоя к интенсивной мышечной деятельности потребность в кислороде возрастает во много раз, однако сразу она не может быть удовлетворена. Нужно время, чтобы усилилась деятельность систем дыхания и кровообращения и чтобы кровь, обогащенная кислородом, могла дойти до работающих мышц. По мере усиления активности систем вегетативного обеспечения постепенно увеличивается потребление кислорода в работающих мышцах. При равномерной работе, если ЧСС превышает 150 уд. в мин, скорость потребления кислорода возрастает до тех пор, пока не наступит устойчивое состояние метаболических процессов, при котором потребление кислорода достигает постоянного уровня. При более интенсивной работе (с ЧСС 150-180 уд. в мин) устойчивое состояние не устанавливается и потребление кислорода может возрастать до конца работы. Максимальный уровень потребления кислорода не может поддерживаться долго. Во время длительной работы он снижается из-за утомления. Усиление и учащение сердечных сокращений во время мышечной работы требуют увеличения скорости энергетического обмена в сердечной мышце. Во время мышечной деятельности усиливается энергетический обмен и в головном мозгу, что выражается в увеличении потребления мозгом глюкозы и кислорода из крови(21).

1.3 Мощность работы

Мощность работы связана обратно пропорциональной зависимостью с ее предельной продолжительностью: чем больше мощность, тем быстрее происходят биохимические изменения, ведущие к утомлению, и тем меньше время работы. Если эту зависимость изобразить графически, отложив по вертикали логарифмы мощности, а по горизонтали – логарифмы предельного времени работы с этой мощностью, то кривая будет иметь вид ломаной линии, разделенной на четыре отрезка, соответствующих четырем зонам относительной мощности: максимальной, субмаксимальной, большой и умеренной. Предельная длительность работы в зоне максимальной мощности составляет 15-20 с, в зоне субмаксимальной мощности – от 20 с до 2-3 мин, в зоне большой мощности – до 30 мин, в зоне умеренной мощности – до 4-5 часов. Работа в зоне максимальной мощности обеспечивается энергией в основном за счет АТФ и КрФ, частично - за счет гликолиза. Однако скорость гликолиза в этой зоне не достигает своих наивысших значений, поэтому содержание молочной кислоты в крови обычно не превышает 1-1,5 г на литр, мобилизация гликогена печени почти не происходит и содержание глюкозы в крови почти не изменяется по сравнению с уровнем покоя. Энергетическое обеспечение работы в зоне субмаксимальной мощности идет в основном за счет анаэробного гликолиза. В крови в большом количестве появляется молочная кислота. Усиливается мобилизация гликогена печени. В зоне большой мощности основное значение имеют аэробные источники энергии при достаточно высоком уровне развития гликолиза. Наиболее интенсивные упражнения в зоне умеренной мощности совершаются при максимуме аэробного производства энергии. В следствии усиленного расхода запасов гликогена в печени содержание глюкозы в крови падает ниже 0,8 г на литр. В моче в значительном количестве появляются продукты распада белков. Отмечается большая потеря организмом воды и минеральных солей(6).

1.4 Возраст и спортивная работоспособность

Физическая работоспособность спортсменов обнаруживает закономерные изменения с возрастом. Возможности энергопродукции аэробным и анаэробным путями возрастают по мере физиологического созревания организма и формирования психической сферы человека. С возрастом увеличиваются общая метаболизирующая масса тела, количество ключевых ферментов аэробного и анаэробного обмена в скелетных мышцах, активность и стабильность этих ферментов в работе, повышаются запасы энергетических веществ в тканях, совершенствуется работа вегетативных систем, ответственных за доставку мышцам кислорода и питательных веществ и удаление продуктов распада. Все эти показатели обычно достигают максимума к 20-30 годам, в пору полной физиологической зрелости человека. В этом возрасте, как правило, достигают наивысших спортивных результатов в тех видах спорта, где требуется высокая энергетическая производительность. После 40 лет показатели физической работоспособности постепенно понижаются и к 60 годам становятся примерно вдвое меньше, чем в зрелом возрасте(21).

1.5 Основные биохимические факторы, лимитирующие проявление скоростно-силовых качеств

Основные биохимические факторы, лимитирующие проявление скоростно-силовых качеств, можно установить исходя из «фундаментальных зависимостей» для мышцы. Первая из этих зависимостей описывает условия проявления максимальной мышечной силы. Результаты экспериментальных исследований, выполненных на различных мышцах человека и животных, показывают, что величина максимального мышечного усилия прямо пропорциональна длине саркомера, или длине толстых миозиновых нитей, т.е. степени полимеризации миозина, и общему содержанию в мышце сократительного белка актина. Вторая «фундаментальная зависимость» описывает связь между величиной максимальной скорости сокращения мышцы, длиной саркомера и относительной АТФ-азной активностью миозина. Максимальная скорость сокращения прямо пропорциональна относительной АТФ-азной активности. В произвольных движениях человека важно не изолированное проявление силы или скорости сокращения, а их совместный эффект, оцениваемый по величине мощности развиваемого усилия. Мощность является произведением силы на скорость. Поэтому мощность, развиваемая мышцей, является линейной функцией от величины суммарной АТФ-азной активности, то есть общей скорости расщепления АТФ. Суммарная АТФ-азная активность выше в быстро сокращающихся белых волокнах, чем в медленно сокращающихся красных волокнах (21).


1.6 Структура биоритмов как один из критериев физиологической адаптации организма, его потенциальных резервов

В настоящее время большое внимание к биологическим ритмам многих исследователей обусловлено тем, что биологические ритмы человеческого организма являются одним из важнейших механизмов приспособления к окружающей среде и рассматриваются в качестве интегрального критерия функционального состояния организма, его благополучия (3,20).

К настоящему времени у человека обнаружено более 300 ритмически меняющихся с периодом 24 часа физиологических функций. Эти периодические изменения живого организма направлены на то, чтобы активно противостоять изменениям условий внешней среды, максимально сохранив свою целостность (10).

При этом в биологическом ритме всегда присутствует две компоненты – эндогенная и экзогенная. Экзогенная компонента – это воздействие на организм любого внешнего фактора, эндогенная – обусловлена ритмическими процессами. Как считает В.Б. Чернышов (27), эндогенный ритм (суточный) передается от поколения к поколению подобно морфологическому признаку, но с точки зрения биологии невозможно себе представить жестко запрограммированный процесс повторения ритмических явлений, так как существует много «датчиков времени», сдвигающих фазу ритма. В качестве таких датчиков могут выступать свет, температура.

По мнению Г.Д. Губина (7) биологические ритмы являются факторами естественного отбора, так как они осуществляют координацию многообразных процессов организма с временными интервалами окружающих событий и синхронизируют эти процессы с разнообразными изменениями внешней среды, тем самым выполняют чрезвычайную роль в обеспечении существования живых систем – адаптацию. Биоритмологическая адаптация – это прежде всего временное согласование (обычно с некоторым опережением) состояния организма и требований среды.

Фактически в организме идет непрерывный процесс приспособления к постоянно меняющимся условиям окружающей среды – адаптация. Противоречивость адаптационного процесса наиболее ярко выступает в феномене биологического ритма, который Б.С. Алякринский (2) сформулировал как выражение единства и борьбы двух взаимоисключающих начал жизненного процесса – разрушения и созидания, обеспечивающих качественную стабильность живой системы и ее самовоспроизведение.

К-во Просмотров: 491
Бесплатно скачать Дипломная работа: Суточный ритм мышечной силы кисти у хоккеистов